Supplementary Materials

Title: A functional 4-hydroxybenzoate degradation pathway in the phytopathogen *Xanthomonas* campestris is required for full pathogenicity

Authors: Jia-Yuan Wang, Lian Zhou, Bo Chen, Shuang Sun, Wei Zhang, Ming Li, Hongzhi Tang, Bo-Le Jiang, Ji-Liang Tang, Ya-Wen He

Contents

Supplementary Fig. S1
Supplementary Fig. S2
Supplementary Fig. S3
Supplementary Fig. S4
Supplementary Fig. S5
Supplementary Fig. S6
Supplementary Fig. S7
Supplementary Fig. S8
Supplementary Fig. S9
Supplementary Table S1
Supplementary Table S2
Supplementary Table S3

Supplementary Fig. S1 Putative genes or gene clusters for 4-HBA transportation in *Xanthomonas campestris* pv. *campestris*. (a) Putative gene clusters for 4-HBA efflux pumping; (b) Putative genes for 4-HBA uptake. The percentage indicates amino acid identity. All sequences were downloaded from the Microbial Genome Database of NCBI.

Supplementary Fig. S2 Growth of *Xcc* strains in (a) XOLN medium or (b) NYG medium supplemented with 0.5 mM 4-HBA.

Supplementary Fig. S3 The genes Xcc0357, Xcc0358-61, and Xcc0372 are not required for 4-HBA degradation. (a) The growth of *Xcc* strains as determined at an optical density of 600 nm. (b) The 4-HBA levels in the cell cultures of *Xcc* strains during growth in XOLN medium. (c) Bacterial growth of *Xcc* strains on an XOLN plate supplemented with 1.5 mM 4-HBA.

с

Xcc0364 pcaI	MA-DIVSLSEAVAQLIADGDCVAMEGFTHL-IPHAAGHEVIRQRKRNLR MINKTYESIASAVEGITD <u>GSTIMVGGFGTAGMP</u> SELIDGLIATGARDLTIISNNAGNGEI * :: *:**. :: ** :* .:* *:* Glycine cluster
Xcc0364 pcaI	LVRMTPDLIYDQLIGAGCASALRFSWGGNPGVGSLHRLRDAVE GLAALLMAGSVRKVVCSFPRQSDSYVFDELYRAGKIE : * : . ::*:* ** .
Xcc0364 pcaI	HGWPAPLQLREHSHADMANAYVAGASGLP-FAVLRGYVGSDLPKVNDSIRFLQCP LEVVPQGNLAERIRAAGSGIGAFFSPTGYGTLLAEGKETREID *. :.::*: ***: * ** *.: :::
Xcc0364 pcaI	YTGQTLATSPAVNPDVTVIHAQQADRRGNVLLWGIL-GVQKEAALAARKVIVTVEEIVDT GRMYVLEMPLHADFALIKAHKGDRWGNLTYRKAARNFGPIMAMAAKTAIAQVDQVVEL *: :. *.::*:*:*: **: . *:**:**
Xcc0364 pcaI	LDAPPNACILPRWVVSAVCVVPGGAAPSYAHGYSARDNRFYLAWDAMARDRARFQAWIQA GELDPEHIITPGIFVQRVVAVTGAAASSIAKAV
Xcc0364 pcaI	HILDTDDFAGFQRVYAGSQHAEAA

Supplementary Fig. S4 Domain organization and multiple sequence alignment of Xcc0364 and PcaI. (a) Domain organization of PcaI in *Pseudomonas putida*. (b) Domain organization of Xcc0364 in *Xcc*. (c) Sequence alignment of PcaI and Xcc0364. Domain organization was conducted using the SMART program (http://smart.embl-heidelberg.de). Sequence alignment was conducted using the program Clustal Omega (http://www.ebi.ac.uk/Tools/msa/ clustalo/).

С

pcaJ Xcc0365	MTITKKLSRTEMAQRVAADIQEGAYVNLGIGAPTLVANYLGDKEVFLH <u>SENG</u> LLGMG MSDYSTNEMMTVAAARRLPDGAVCFVGIGLPSTAANLARLTHAPEVTLIYESGPIGAR ::. :. *: .* : :** :*** *: .** ** ** *.* * SENG motif
pcaJ Xcc0365	PSPAPGEEDDDLINAGKQHVTLLTGGAFFHHADS-FSMMRGGHLDIAVLGAFQVSVKGDL PQVLPLSIGDGELAETADTVVSTPEIFRYWLQGGRVDVGFLGAAQIDRHANL *. * . * : : ::*
pcaJ Xcc0365	ANWHTGAEGSIPAVGGAMDLATGARQVFVMMDHLTKTGESKLVP NTTVIGPYAAPKTRLPGAGGAPEIATSAKQVFIIMRQSTRSFVQTLDFITTVGHLDGGDA : : :**** ::**.*::* : *::*
pcaJ Xcc0365	ECTYPLTGIACVSRIYTDLAVLEVTPEGLKVVEICADIDFDELQKLSGVPL RTRAGLPGAGPTVVVTDLCVMEPDPVSRELTVTALHPGVTQAQVTAATGWAVRFAAT * :* : : ***.*:* * . ::. : : :: :* :
pcaJ Xcc0365	IKIKIK

Supplementary Fig. S5 Domain organization and multiple sequence alignment of Xcc0365 and PcaJ. (a) Domain organization of PcaJ in *Pseudomonas putida*. (b) Domain organization of Xcc0365 in *Xcc*. (c) Sequence alignment of PcaJ and Xcc0365. Domain organization was conducted using the SMART program (http://smart.embl-heidelberg.de). Sequence alignment was conducted using the program Clustal Omega (http://www.ebi.ac.uk/Tools/msa/ clustalo/).

a

Xcc0364	MADIVSLSEAVAQLIADGDCVAMEGFTHLIPHAAGHEVIRQRKRNLRLVRMTPDLIYDQL
SMB20587	${\tt MARIMSLAEAVEENVRDGDTVAMEGFTHLIPYAAGHEVIRQGRKDLFLVRMTPDILYDQL}$
	** *:**:*** : : *** *******:***********
Xcc0364	${\tt IGAGCASALRFSWGGNPGVGSLHRLRDAVEHGWPAPLQLREHSHADMANAYVAGASGLPF}$
SMB20587	${\tt IGVGAARGMKFSWGGNPGVGSLHRFRDAVENQWPRPLEIEEHSHAAMANAYEAGAGNLPF}$
	** .* . : : ***************************
Xcc0364	$\verb AVLRGYVGSDLPKVNDSIRFLQCPYTGQTLATSPAVNPDVTVIHAQQADRRGNVLLWGIL AVLRGYVGSDLPKVNDSIRFLQCPYTGQTLATSPAVNPDVTVIHAQQADRRGNVLLWGIL AVLRGYVGSDLPKVNDSIRFLQCPYTGQTLATSPAVNPDVTVIHAQQADRRGNVLLWGIL $
SMB20587	AAFRGYIGADLPKVNLNIRSVTCPFTGEVLAAVPAIRPDVTIIHAQRADRNGNVLIEGIV
	* . : * * : * * * * * * * * * * * * * *
Xcc0364	GVQKEAALAARKVIVTVEEIVDTLDAP-PNACILPRWVVSAVCVVPGGAAPSYAHGYSAR
SMB20587	${\tt GVQKEAVLAARRSIVTVEEIVDELSPPSPNSVVLPGWAVTAVAHVPGGAFPSYAHGYYPR}$
	***** **** ******* * * * *** **********
Xcc0364	DNRFYLAWDAMARDRARFQAWIQAHILDTDDFAGFQRVYAGSQHAEAA
SMB20587	SNAFYIRWDEIARDRETFTAWIRENVLAAKPEDFARHAAKTAAKVA

.* **: ** :**** * ***: .:* :. *** . *.. *

b

Species	Homologues of Xcc0364	Amino acid identity (%)	NCBI access No.
Xac	XAC0364	92	AAM35256.1
Xcr	XCR_4151	99	AEL09008.1
Xff	XFF4834R_chr03 480	92	CDF60017.1
Xoc	XOC_4548	91	AEQ98605.1
Lysobacter capsici	AZ78_14030	79	EYR67734.1
Pseudomonas aeruginosa	PA0226	73	AAG03615.1
Pseudomonas knackmussii	PKB_2952	72	CDF84299.1
Sinorhizobium meliloti	SMB20587	67	CAC49899.1
Mesorhizobium loti	MAFF_RS17350	58	BAB50895.1

Supplementary Fig. S6 Homologs of Xcc0364 in other bacterial species. (a) Multiple sequence alignment analysis of Xcc0364 and SMB20588. (b) Putative homologs of Xcc0364 in other bacterial species.

** *** .** ::*** ** : . *

Species	Homologues of Xcc0365	Amino acid identity (%)	NCBI access No.
X. axonopodis pv. citri	XAC0365	89	AAM35257.1
Xcr	XCR_4150	100	AEL09007.1
Xff	XFF4834R_chr0 3490	89	CDF60018.1
Xoc	XOC_4547	90	AEQ98604.1
Lysobacter capsici	AZ78_14025	76	EYR67733.1
Pseudomonas aeruginosa	PA0227	72	AAG03616.1
Pseudomonas knackmussii	PKB_2951	74	CDF84298.1
Sinorhizobium meliloti	SMB20588	60	CAC49900.1
Mesorhizobium loti	MAFF_RS17345	63	BAB50894.1

b

Supplementary Fig. S7 Homologs of Xcc0365 in other bacterial species. (a) Multiple sequence alignment analysis of Xcc0365 and SMB20588. (b) Putative homologs of Xcc0365 in other bacterial species.

а

Supplementary Fig. S8 Production of extracellular enzymes and polysaccharide (EPS) in *Xcc* strains. (a) Cellulase activity. About 1 μ L of the cell culture (OD ₆₀₀ \approx 1.0) was spotted onto NYG containing 0.5% CMC. (b) Amylase activity. *Xcc* strains were grown on an NYG plate supplemented with 0.1% soluble starch. (c) Protease activity. The strains were grown on an NYG plate supplemented with 1.0% skim milk. (d) EPS production in NYG medium.

Supplementary Fig. S9 LC-MS analysis of radish hydrolysates. (a) Molecular weights of the putative 2-HBA, 3-HBA and 4-HBA detected in radish hydrolysates. (b) The established standard curves for determining the concentration of 2-HBA, 3-HBA and 4-HBA.

Strains	Relevant characteristics	Refernce/source
Vac VC1	Wild type Diff	Laboratory
	who type, Kh	collection
Δ0355	xcc0355 in-frame deletion mutant of XC1	This study
Δ0356	xcc0356 in-frame deletion mutant of XC1	This study
Δ0357	xcc0357 in-frame deletion mutant of XC1	This study
Δ0358-61	<i>xcc0358, xcc0359, xcc0360, and xcc0361</i> in-frame deletion mutant of XC1	This study
Δ0364	xcc0364 in-frame deletion mutant of XC1	This study
Δ0365	xcc0365 in-frame deletion mutant of XC1	This study
Δ0364-65	<i>xcc0364</i> and <i>xcc0365</i> in-frame deletion mutant of XC1	This study
Δ0367-68	<i>xcc0367</i> and <i>xcc0368</i> in-frame deletion mutant of XC1	This study
$\Delta 0370$	xcc0370 in-frame deletion mutant of XC1	This study
Δ0372	xcc0372 in-frame deletion mutant of XC1	This study
Δ0373	xcc0373 in-frame deletion mutant of XC1	This study
Δ0356C	$\Delta 0356$ mutant containing pBBR_0356 which contains full length <i>xcc0356</i>	This study
Δ0364C	$\Delta 0364$ mutant containing pBBR_0364 which contains full length <i>xcc0364</i>	This study
Δ0365C	$\Delta 0365$ mutant containing pBBR_0365 which contains full length <i>xcc0365</i>	This study
$\Delta 0364(pcaI)$	$\Delta 0364$ mutant containing pBBR_ <i>pcaI</i> which contains full length <i>pcaI</i>	This study
$\Delta 0365(pcaJ)$	$\Delta 0365$ mutant containing pBBR_pcaJ which contains full length pcaJ	This study
Δ0367-68C	$\Delta 0367-68$ mutant containing pBBR_0367-68 which contains full length <i>xcc0367</i> and <i>xcc0368</i>	This study
P.putida		
KT2440	Wild type	Prof. Ping Xu lab collection
E.coli		
DH5a	$\begin{array}{l} F^{-}\phi 80 \textit{lacZ} \bigtriangleup M15 \textit{ endA1} \textit{hsdR17} (r_{k}^{-}m_{k}^{-}) \textit{supE44 thi}^{-1} \\ \textit{gyrA96} \ \bigtriangleup (\textit{lacZYA-argF}) \end{array}$	Laboratory collection
S17-1	recA pro (RP4-2Tet::Mu Kan::Tn7)	Simon et al., 1983

Supplementary Table S1. Bacterial strains used in this study

Simon, R., Priefer, U., and Puhler, A. 1983. A broad host range mobilization system for *in vivo* genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotech 1:784-791

Supplementary Table S2. Plasmids used in this study

Plasmids	Relevant characteristics	Refernce/source
pK18mobSacB	Suicide plasmid in XCC, Km ^R	Schafer et al., 1994
nDV2012	ColE1 replicon TraRK+ Mob+; Helper plasmid for	Figurski and
p KK 2015	mobilisation of non-self-transmissible plasmids, Km ^R	Helinski, 1979
pBBR1MCS2	Plasmid for gene complementation, Km ^R	Kovach et al.,1995
pK18-0355	Sucide construct for in-frame deletion of xcc0355	This study
pK18-0356	Sucide construct for in-frame deletion of xcc0356	This study
pK18-0357	Sucide construct for in-frame deletion of xcc0357	This study
pK18-0358-61	Sucide construct for in-frame deletion of <i>xcc0358</i> , <i>xcc0359</i> , <i>xcc0360</i> , <i>and xcc0361</i>	This study
pK18-0364	Sucide construct for in-frame deletion of <i>xcc0364</i>	This study
pK18-0365	Sucide construct for in-frame deletion of xcc0365	This study
pK18-0364-65	K18-0364-65 Sucide construct for in-frame deletion of $xcc0364$ and $xcc0365$	
pK18-0367-68	Sucide construct for in-frame deletion of <i>xcc0367</i> and <i>xcc0368</i>	This study
pK18-0370	Sucide construct for in-frame deletion of <i>xcc0370</i>	This study
pK18-0372	Sucide construct for in-frame deletion of xcc0372	This study
pK18-0373	Sucide construct for in-frame deletion of <i>xcc0373</i>	This study
pBBR0356	Complementary vector containing whole length of xcc0356	This study
pBBR0364	Complementary vector containing whole length of xcc0364	This study
pBBR0365	Complementary vector containing whole length of xcc0365	This study
pBBR0367-68	Complementary vector containing whole length of xcc0367 and xcc0368	This study
pBBR-pcaI	Complementary vector containing whole length of pcaI	This study
pBBR-pcaJ	Complementary vector containing whole length of pcaJ	This study

- Figurski, D.H., and Helinski, D.R. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proceedings of the National Academy of Sciences of the United States of America 76:1648-1652.
- Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., 2nd, and Peterson, K.M. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175-176.
- Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., and Puhler, A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69-73.

Application	Primers	Sequence(5'-3')	
In-frame deletion			
Δ0355	0355-F1	cccagccacccgaacggatacacc	
	0355-R1	cgctacagccgcagatacattacgc	
	0355-F2	tctgcggctgtagcggtggctgccgaccttggatttttc	
	0355-R2	cacccacgacggcctgttctatgc	
Δ0356	0356-F1	ggaatteteggeaaggetggeaaagacaaga	
	0356-R1	aacctgggtgcgcatacggagt	
	0356-F2	atgcgcacccaggttgcggcggtgttgcagcagtattc	
	0356-R2	cgggatcccagcaacagggcgcggggagaac	
Δ0357	0357-F1	gcccagccgcagccgttactacct	
	0357-R1	cgctcgcccgctagacgctttg	
	0357-F2	tctagcgggcgagcggacccgcgtgatccgtccaaga	
	0357-R2	ccgggcatggcgaagaacacctat	
Δ0358-61	0361-F1	cgacgcggcgaatgtgggtt	
	0361-R1	cgccgcatacgccaggttctcc	
	0358-F2	ctggcgtatgcggcgcgcggcaccagcaaggaacact	
	0358-R2	ссдссаассссаассадааа	
Δ0364	0364-F1	ggaattccggccctgcgcgttgtagacc	
	0364-R1	ggcgtgcgggatcaggtgggtaa	
	0364-F2	ctgatcccgcacgccgcggaggcggcatgagcgacta	
	0364-R2	cgggatcctggactgccgcatgatgatgaagac	
Δ0365	0365-F1	ggaatteecceggacetgatttaegaceaac	
	0365-R1	gccgatgccgacgaaacacacc	
	0365-F2	ttcgtcggcatcggcggagccgaggcatgagcgagg	
	0365-R2	cgggatcctccaggcgcggattgatgaagc	
Δ0364-65	0364-F1	ggaattccggccctgcgcgttgtagacc	
	0364-R1	ggcgtgcgggatcaggtgggtaa	
	0365-F3	ctgatcccgcacgccggagccgaggcatgagcgagg	
	0365-R2	cgggatcctccaggcgcggattgatgaagc	
Δ0367-68	0367-F1	cgcgcgggtgctggggtttg	
	0367-R1	gcgccgatagccgagcaggacat	
	0368-F2	ctcggctatcggcgcctcgtgttcatgcgcgggctgt	
	0368-R2	gtggcactgggcggcaatgacc	
$\Delta 0370$	0370-F1	gcggcgatgtggtgctgctga	
	0370-R1	gcgatgtgtcggcaactggagaaa	
	0370-F2	ttgccgacacatcgcaacgacgtgctgctgggttttctc	
	0370-R2	tcgggtgcgatgtctttgtgttga	

Supplementary Table S3. Primers used in this study

Δ0372	0372-F1	gcctgcccgcccacactcg
	0372-R1	cggcagccgcgaccacaccac
	0372-F2	tggtcgcggctgccgctgctgcgcggtgtggatg
	0372-R2	cctggcggccctgggttatgtg
Δ0373	0373-F1	ggaattcacgccggcgtccaccagttg
	0373-R1	gggacgtttgcggcgggaagag
	0373-F2	cgccgcaaacgtcccctgcgtggcgaggtgattgc
	0373-R2	cgggatcctgttgtcggcgctggtgctgtatg
Complementation		
0356	0356-F	cccaagctttcggcaaggctggcaaagacaaga
	0356-R	cgggatcccgctcgcccgctagacgctttgac
0364	0364-F	cccaagetteggecetgegegttgtagace
	0364-R	gctctagagccgatgccgacgaaacacacc
0365	0365-F	cccaagcttatccgtttcctgcagtgcccctac
	0365-R	gctctagactggacagtgcgccgccgtaa
0367-68	0367-68-F	cccaagcttcgcgcgggtgctggggtttg
	0367-68-R	gctctagaccctggcgacctgtgcaaacaactac
pcaI	3951-F	ggaattcactgcatcgaaccactggaaagcg
	3951-R	cgggatcccggtgcgggagagctttttggtga
pcaJ	3952-F	ggaattccaacctggccgagcgtatccg
	3952-R	cgggatcctcgaagcggctgtaaaggtagtctcaag
qRT-PCR	•	
0364	RT0364-F	cttttcctggggcggcaatcct
	RT0364-4	ccatgtccgcgtggctgtgttc
0365	RT0365-1	caccccggagatctttcgctattgg
	RT0365-2	cagatgaccgacggtggtgatgaa
atpD	atpD-F	gcgatggtgtacggccagatgaa
	atpD-R	cggccagcgtgtagcggtagatgt