Highly Flexible and Conductive Printed Graphene for Wireless Wearable Communications Applications (Supplementary Information)

Xianjun Huang,¹ Ting Leng,¹ Mengjian Zhu,² Xiao Zhang,¹ JiaCing Chen,³ KuoHsin Chang,³ Mohammed Aqeeli,¹ Andre K. Geim,⁴ Kostya S. Novoselov,² Zhirun Hu,^{1,*}

*Correspondence: Zhirun Hu (<u>z.hu@manchester.ac.uk</u>)

Supplementary Figure S1 Measured S parameters of slot transmission line. (a) Real and imaginary part of S₁₁ when g=0.3mm, (b) Real and imaginary part of S₂₁ when g=0.3mm, (c) Real and imaginary part of S₁₁ when g=1mm, (b) Real and imaginary part of S₂₁ when g=1mm.

Supplementary Figure S2 Reflections of Un-bended (a), bended (b, c) and twisted (d) slot lines.

Supplementary Figure S3 CWP fed slot antenna layout parameters

Supplementary Figure S4 Comparison of measured radiation pattern at 1.97GHz of case (a)-(c), and radiation pattern at 2.16GHz of case (d). It can be seen that in case (d) r = 2.5cm, at 2.16GHz, the maximum gain frequency point, the radiation pattern similar with other cases (a)-(c).

Reference

¹ Nithisopa, K., Nakasuwan, J., Songthanapitak, N., Anantrasirichai, N., & Wakabayashi, T. (2007). Design CPW fed slot antenna for wideband applications.