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Some model parameters are estimated in §1 and the model is analyzed in §2. Figs. 3-4

are discussed in the main text.

1 Parameter Estimation

The PMF of the stool production rate is derived in §1.1, and the test failure rates η and γ

are derived in §1.2.

1.1 Stool Production Rate

For each of 30 donors, we compute the donor stool production rate in grams per day, which

is the donor’s total stool production in grams divided by the total time between the day the

donor begins donating and the day the donor exits the system (or until the end of our data

collection period if the donor has not exited). We find that the mean production rate is

87.2 grams per day and the coefficient of variation (standard deviation divided by the mean)

is 0.74. We use n = 9 classes for the intervals (4.7 − 25.3, 25.3 − 45.9, 45.9 − 66.5, 66.5 −

87.1, 87.1−107.7, 107.7−128.3, 128.3−148.9, 148.9−169.7, 169.7−190.3) grams/day, and set

the si values to the interval centers (15, 35.6, 56.2, 76.8, 97.5, 118, 139, 159, 180) grams/day to

obtain the PMF appearing in Fig. 1.

In addition, we examine how the number of weekly visits by a donor varies over time.

For donor i = 1, . . . , 30, let viτ be the number of visits by donor i in week τ of the donor’s

donation period, and let Ti be donor i’s lifetime (in weeks) as a donor. The mean (averaged

over the number of active donors at each point in time) visit rate in week τ is

∑
{i:Ti≥τ} viτ

|{i : Ti ≥ τ}|
, (1)

which is plotted vs. τ in Fig. 2. The mean visit rate is relatively constant through week 49,
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and the mean visit rate during weeks 49-54 is unreliable because there are only two donors

who have been active for more than 49 weeks.

1.2 Test Failure Rates

The small amount of data precludes us from estimating the exact nature of the time-to-failure

distribution. Hence, we assume that the time-to-failure has an exponential distribution,

where η is the exponential rate associated with rotavirus and CDI, and γ is the exponential

rate associated with the other 25 infectious agents.

The data consist of test results and testing times for 13 active donors. Let D1
i be the

time between the day donor i begins donating and the day of the donor’s first test, and let

D2
i be the time between donor i’s first and second tests. All 13 donors fell into one of the

following four categories.

Group 1: Donors who failed their first test due to rotavirus or CDI, which occurs with

probability

e−γD
1
i (1− e−ηD1

i ). (2)

Group 2: Donors who failed their first test because of the other 25 agents, which occurs with

probability

e−ηD
1
i (1− e−γD1

i ). (3)

Group 3: Donors who passed their first test but failed their second test due to rotavirus or

CDI, which occurs with probability

e−γ(D
1
i+D

2
i )e−ηD

1
i (1− e−ηD2

i ). (4)

Group 4: Donors who are still active after passing a single test, which occurs with probability

e−(η+γ)D
1
i . (5)
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Letting i ∈ Gj denote that donor i is in group j, we find that the negative log-likelihood

associated with our dataset is

L(η, γ) =
∑
i∈G1

[
γD1

i − log(1− e−ηD1
i )
]

+
∑
i∈G2

[
ηD1

i − log(1− e−γD1
i )
]

+
∑
i∈G3

[
γ(D1

i +D2
i ) + ηD1

i − log(1− e−ηD2
i )
]

+
∑
i∈G4

[
(γ + η)D1

i

]
. (6)

The function L(η, γ) in (6) is convex in η and γ, and minimizing this function yields the

maximum likelihood values, η = 0.0066/day and γ = 0.0040./day

2 Problem Analysis

The problem is formulated in §2.1 in the case of deterministic stationary demand (i.e.,

β = 0). In §2.2, we show that the optimal screening strategy in §2.1 also holds for the case

of nonstationary demand (i.e., β > 0).

2.1 Stationary Demand

In the stationary demand case, β = 0 and the demand rate equals α for all t. Because

demand is stationary, we drop the dependence on time t in this subsection. The analysis

is performed in two steps: to derive the mean number of donors and the release rate in

equilibrium, and then to derive the cost function.

We can think of each donation cycle for a class k donor as having two stages: the

first stage consists of the dk days before the interim test, and the second stage consists of

the Dk − dk days between the interim test and the regular test. Referring to Fig. 1 in the

main text, new donors of class k arrive at an average rate of rfkp0pspb. After dk days, class

k donors exit the first stage after interim testing, and they fail the interim test (and exit

the system) with probability 1− e−ηdk and move to the second stage with probability e−ηdk .

Upon entering the second stage, class k donors wait Dk − dk days and then undergo regular
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testing, and they fail the regular test (and exit the system) with probability 1− eηdk−(η+γ)Dk

and return to the first stage with probability eηdk−(η+γ)Dk . Let xk and yk be the mean number

of class k donors in the first stage and second stage, respectively. Then the above reasoning

leads to the system of ordinary differential equations,

ẋk = rfkp0pspb −
1

dk
xk +

eηdk−(η+γ)Dk

Dk − dk
yk, (7)

ẏk =
e−ηdk

dk
xk −

1

Dk − dk
yk. (8)

Setting the left sides of (7)-(8) to zero and solving yields

xk =
dk

1− e−(η+γ)Dk
rfkp0pspb, (9)

yk =
e−ηdk(Dk − dk)
1− e−(η+γ)Dk

rfkp0pspb. (10)

With xk and yk in hand, we can compute the release rate r such that the rate at which salable

stool is produced equals the demand rate α. Because skDk grams of stool are released from

quarantine and made available for sale whenever a class k donor passes a regular test, we

have the equation

n∑
k=1

skDk
eηdk−(η+γ)Dk

Dk − dk
yk = rp0pspb

n∑
k=1

skDkfk
e(η+γ)Dk − 1

= α. (11)

Solving for r in (11) gives the input rate

r =
α

p0pspb
∑n

k=1
skDkfk

e(η+γ)Dk−1

. (12)
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Referring again to Fig. 1 in the main text, we can express the total cost per day by

C(D1, . . . , Dn, d1, . . . , dn) =rc0 + rp0cs + rp0pscb

+
n∑
k=1

(
(xk + yk)cd + (xk + yk)skcp +

xk
dk
ci +

yk(cs + eηdk−(η+γ)Dkcb)

Dk − dk

)
,

(13)

where, in the last term in (13), we assume that those failing the regular test will fail the

stool test. Substituting (9), (10) and (12) into (13) gives

C(D1, . . . , Dn, d1, . . . , dn) =
α

p0pspb
∑n

k=1 skDkfk
e−(η+γ)Dk

1−e−(η+γ)Dk

[
c0 + p0cs + p0pscb

+
n∑
k=1

fkp0pspb
1− e−(η+γ)Dk

(
[dk + e−ηdk(Dk − dk)](cd + skcp) + ci + e−ηdkcs + e−(η+γ)Dkcb

) ]
.

(14)

The optimization problem is given by

min
D1,...,Dn,d1,...,dn

C(D1, . . . , Dn, d1, . . . , dn) (15)

subject to Dk ≥ dk ≥ 0, 1 ≤ k ≤ n. (16)

The cost function in (14) is convex in the domain of interest, and (14)-(16) can be solved via

standard convex optimization methods such as projected gradient descent [2]. We round off

the solution to the nearest integer to get the results stated in the main text.

2.2 Nonstationary Demand

Turning to the nonstationary case where the demand rate at time t is αeβt with β > 0, we

divide the donation cycle into two stages as in §2.1, but we define xk(t) and yk(t) differently.

Let xk(t) be the mean number of class k donors who start a new cycle of donation at time
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t, where these donors are either new donors who just passed their initial serum screen or

continuing donors who just had their previous cycle’s stools released form quarantine and

offered for sale. Recalling that a class k donor undergoes an interim test dk days into a

cycle and the results from this test incur a delay of τi days, we see that the mean number of

class k donors who receive their interim test result at day t is xk(t− (dk + τi)). Let yk(t) be

the mean number of class k donors who receive their regular test results at time t. Because

the regular test takes place Dk − dk days after the interim test and the delay to receive

the results of the regular test is τs days, the mean number of class k donors who start the

second phase of the donation cycle at time t is yk(t+ (Dk − dk) + τs). By these definitions,

on average eηdk−(η+γ)Dkyk(t) class k donors pass their regular test and start a new donation

cycle at time t, and their produced stool over the last Dk days are released from quarantine

and offered for sale. Also, the new class k donors are released into the donation loop at rate

fkp0pspbr(t − τs) per day at time t, where τs is the time delay incurred by the initial stool

test.

Taken together, it follows that the differential equations governing xk(t) and yk(t) are

ẋk(t) = yk(t)e
ηdk−(η+γ)Dk + fkp0pspbr(t− τs)− xk(t), (17)

ẏk(t+ (Dk − dk) + τs) = xk(t− (dk + τi))e
−ηdk − yk(t+ (Dk − dk) + τs), (18)

n∑
k=1

yk(t)skDke
ηdk−(η+γ)Dk = αeβt, (19)

where (19) ensures that the nonstationary demand is satisfied.

The above 2n + 1 equations can be solved to derive the 2n + 1 unknown functions

(x1(t), . . . , xn(t), y1(t), . . . , yn(t), r(t)). We can represent and solve the above equations in

the Laplace domain as follows. Let Xk(z), Yk(z) and R(z) be the Laplace transform of xk(t),
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yk(t) and r(t), respectively. Then equations (17)-(19) are equivalent to

zXk(z) = Yk(z)eηdk−(η+γ)Dk + fkp0pspbR(z)e−τsz −Xk(z), (20)

zYk(z)e((Dk−dk)+τs)z = Xk(z)e−ηdke−(dk+τi)z − Yk(z)e((Dk−dk)+τs)z, (21)

n∑
k=1

Yk(z)skDke
ηdk−(η+γ)Dk =

α

z − β
. (22)

Solving (20)-(21) for Xk and Yk gives

Xk(z) =
e(Dk+τs+τi)z(z + 1)

(z + 1)2e(Dk+τs+τi)z − e−(η+γ)Dk
fkp0pspbR(z)e−τsz, (23)

Yk(z) =
e−ηdk

(z + 1)2e(Dk+τs+τi)z − e−(η+γ)Dk
fkp0pspbR(z)e−τsz, (24)

and substituting (24) into (22) yields

R(z) =
1

p0pspb

eτsz∑n
k=1 skDkfk

e−(η+γ)Dk

(z+1)2e(Dk+τs+τi)z−e−(η+γ)Dk

α

z − β
. (25)

Now that we have the solution (23)-(25), there are two remaining tasks: attempt to

invert equation (25) to obtain the optimal release rate r(t), and derive the cost function and

optimal inter-testing times; we begin with the latter task. The total cost rate at time t is

ĉ(t) =c0r(t) + p0csr(t) + p0pscbr(t− τs) +
n∑
k=1

(
(cd + skcp)

∫ dk

0

xk(t− τ)dτ

+ xk(t− dk)ci + (cd + skcp)

∫ Dk−dk

0

yk(t+ τ + τs) dτ + yk(t)(cs + cbe
ηdk−(η+γ)Dk)

)
.

(26)

Note that the total cost rate in (26) grows exponentially with time. We re-express our
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objective as minimizing the total cost per gram of demanded stool, and let the time horizon

go to infinity, i.e.,

C(D1, . . . , Dn, d1, . . . , dn) = lim
T→∞

∫ T
0
ĉ(t) dt∫ T

0
αeβt dt

. (27)

Let Ĉ(z) be the Laplace transform of ĉ(t), which from (26) is given by

Ĉ(z) =
(
c0 + p0cs + p0pscbe

−τsz
)
R(z) +

n∑
k=1

(
(cd + skcp)Xk(z)

∫ dk

0

e−τzdτ

+Xk(z)e−dkzci + (cd + skcp)Yk(z)

∫ Dk−dk

0

e(τ+τs)zdτ + Yk(z)(cs + cbe
ηdk−(η+γ)Dk)

)
.

(28)

Substituting (23)-(25) into (28) gives

Ĉ(z) = G(z)
α

z − β
, (29)

where

G(z) =
1

p0pspb

1∑n
k=1 skDkfk

e−(η+γ)Dk

(z+1)2e(Dk+τs+τi)z−e−(η+γ)Dk

[(
c0 + p0cs + p0pscbe

−τsz
)
eτsz

+
n∑
k=1

(((
e−dkzci + (cd + skcp)

∫ dk

0

e−τzdτ
)

(z + 1)e(Dk+τs+τi)z +
(

(cs + cbe
ηdk−(η+γ)Dk)

+ (cd + skcp)

∫ Dk−dk

0

e(τ+τs)zdτ
)
e−ηdk

)
p0pspbfk

(z + 1)2e(Dk+τs+τi)z − e−(η+γ)Dk

)]
.

(30)

Letting g(t) be the inverse Laplace transform of G(z), we re-express (29) in the time domain

as

ĉ(t) = g(t) ∗ (αeβt), (31)

where ∗ denotes the convolution operation. Substituting (31) for ĉ(t) in (27), it follows [3]

that

C(D1, . . . , Dn, d1, . . . , dn) =

∫ ∞
0

g(t)dt. (32)
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The integral property of the Laplace transform implies that

∫ ∞
0

g(t)dt = G(0), (33)

which together with (30) and (32) give the cost per gram of demanded stool as

C(D1, . . . , Dn, d1, . . . , dn) =
1

p0pspb
∑n

k=1 skDkfk
e−(η+γ)Dk

1−e−(η+γ)Dk

[
c0 + p0cs + p0pscb

+
n∑
k=1

fkp0pspb
1− e−(η+γ)Dk

(
[dk + e−ηdk(Dk − dk)](cd + skcp) + ci + e−ηdkcs + e−(η+γ)Dkcb

) ]
.

(34)

The cost function in (34) is exactly equal to the cost function (up to the multiplicative con-

stant α) for the stationary case in (14). Therefore, the optimal values of (D1, . . . , Dn, d1, . . . , dn)

in the stationary case, given by the solution to the optimization problem (14)-(16), are also

optimal for the nonstationary demand case. Furthermore, because we did not use the special

structure (i.e., exponential growth) of the nonstationary demand function, the same values

of (D1, . . . , Dn, d1, . . . , dn) remain optimal for any arbitrary nonstationary demand function.

Returning to the second task, although numerical methods can be used to compute the

optimal release rate r(t) from the optimal release rate R(z) in the Laplace domain, standard

numerical packages struggled to invert equation (25). Consequently, in the remainder of this

subsection, we describe a heuristic procedure to approximate r(t) from equation (25). The

first of two approximations in this heuristic is to replace the n donor classes by a single

weighted (with weights (f1, . . . , fn)) class, denoted by class 0, that has values of s, D and d

equal to s0 =
∑n

k=1 fksk, D0 =
∑n

k=1 fkDk and d0 =
∑n

k=1 fkdk. Replacing the n classes by

class 0 allows us to approximate equation (25) by

R0(z) =
e(η+γ)D0

p0pspbs0D0

[
(z + 1)2e(D0+τs+τi)z − e−(η+γ)D0

] αeτsz
z − β

. (35)
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Taking the inverse Laplace transform gives the following approximation for r(t):

r0(t) =
α

p0pspbs0D0

(
(β+ 1)2e(η+γ)D0+β(D0+2τs+τi)H(t+D0 + 2τs + τi)e

βt− eβτseβtH(t+ τs)

)
,

(36)

where H(t) is the Heaviside step function that requires donors to be released into the system

before the start of the demand (i.e., at t < 0) to guarantee that there is salable stool to

satisfy the initial demand at time 0.

For t > 0, equation (36) implies that the demand rate divided by the release rate is

given by

αeβt

r0(t)
=

p0pspbs0D0

(β + 1)2e(η+γ)D0+β(D0+2τs+τi) − eβτs
, t > 0. (37)

Noting that the demand rate divided by the release rate in the stationary case is given by

(see equation (12))

α

r
= p0pspb

n∑
k=1

skDkfk
e(η+γ)Dk − 1

, (38)

we employ the second approximation in our heuristic procedure, which is to re-introduce the

n classes into (37) so that equation (37) reduces to equation (38) when β = 0:

αeβt

r(t)
= p0pspb

n∑
k=1

skDkfk
(β + 1)2e(η+γ)Dk+β(Dk+2τs+τi) − eβτs

, t > 0. (39)

Rearranging (39) and re-incorporating the Heaviside function gives our approximate release

rate,

r(t) =
αeβt

p0pspb
∑n

k=1
skDkfk

(β+1)2e(η+γ)Dk+β(Dk+2τs+τi)H(t+Dk+2τs+τi)−eβτsH(t+τs)

. (40)
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Fig. 1: The PMF fk of the donor stool production rate (in
grams/day). The probabilities that the donor stool production rate equals
(15, 35.6, 56.2, 76.8, 97.5, 118, 139, 159, 180) grams/day are (f1, f2, f3, f4, f5, f6, f7, f8, f9) =
(0.1330, 0.1670, 0.1330, 0.1670, 0.1000, 0.1000, 0.1000, 0.0667, 0.0333).
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Fig. 2: The mean visit rate (in visits/week) in week τ of the donation period (from equa-
tion (1)) vs. τ .
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Fig. 3: The optimal donor-dependent screening variables under the additional constraint
Dk ≥ 30 days. The optimal inter-testing time for regular tests (Dk) and the optimal time
between a regular test and an interim test (dk) as a function of a donor’s class, where classes
k = 1, . . . , 9 have stool production rates in the intervals (4.7 − 25.3, 25.3 − 45.9, 45.9 −
66.5, 66.5 − 87.1, 87.1 − 107.7, 107.7 − 128.3, 128.3 − 148.9, 148.9 − 169.7, 169.7 − 190.3)
grams/day. A second interim test is required (a) for class 9, and (b) for classes 6, 7, 8
and 9.
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Fig. 4: The optimal donor-dependent screening variables under the two-parameter policy,
where dksk = 1899 grams and Dksk = 3201 grams. The optimal inter-testing time for
regular tests (Dk) and the optimal time between a regular test and an interim test (dk) as
a function of a donor’s class, where classes k = 1, . . . , 9 have stool production rates in the
intervals (4.7− 25.3, 25.3− 45.9, 45.9− 66.5, 66.5− 87.1, 87.1− 107.7, 107.7− 128.3, 128.3−
148.9, 148.9− 169.7, 169.7− 190.3) grams/day.
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