

Supplemental Figure 1. Ink-tracking studies on growing leaves reveal different forms of polar growth in leaves. (A-D) Panels showing different growth stages of leaves that were marked with ink spots early in growth (picture on the left in each panel). Leaf lengths are indicated. (E-H) Comparative distribution of ink spots in young and mature leaves. Lengths of the young and the mature leaves have been normalized and a horizontal line has been drawn through the middle of the leaves. The numbers above and below the lines indicate the number of spots adjacent to the midrib of the leaf. Leaf lengths are indicated.

Supplemental Figure 2. Epidermal cell-size in growing leaves of *T. stans*, *B. purpurea*, and *S. jambos*. Epidermal cell size on the adaxial surface of leaves at different developmental stages. Cells were measured near tip (\circ), middle (\Box) and base (Δ) (n = 250-500; average \pm SD). (D) Schematic representation showing the regions of the leaves used to measure the cell areas. (E) RNA gel blot showing the distribution of *HISTONE H4* at different developmental stages of *S. jambos* leaves. Leaf lengths (in cm) are indicated above the blots. Proximal, medial and distal parts of the leaves are represented by p, m and d, respectively. The migration of a 500 base single-stranded RNA marker is shown. Ethidium bromide-stained gel is shown below the blot to indicate RNA loading.

Supplemental Figure 3. Correlation between epidermal cell morphology, tissue anatomy, and cell division. Adaxial epidermal cell morphology (left panels) and the associated internal tissue anatomy from tip, middle, and basal regions of *N. tabacum* (A), *C. variegatum* (B) and *H. rosasinensis* (C) leaves of indicated lengths. Surface imprints (shown in the left panels) were taken before fixing the tissues for histochemical staining. Dark circles on the imprints in (A) are distortions caused by the trichomes. Mitotic indices from the leaf sections near the tip (green bars), middle (blue bars) and base (red bars) are shown as bar graphs (n=1000-1500; average ± SD). Representative mitotic nuclei used for calculation of mitotic indices are shown on the right for each species.

в

	- 14	_	
	1	Л	١.
	F		۸
4			-

			1010121 - 10101010-000000000	
ath-MIR319a	-UUGG <mark>AC</mark> UGAAGGG <mark>AGCUCC</mark> CU	21	ath-MIR396b	UUCCACAGCUUUCUUGAACUU 21
ath-MIR319b	-UUGGACUGAAGGGAGCUCCCU	21	osa-MIR396c	UUCCACAGCUUUCUUGAACUU 21
aly-MIR319b	-UUGGACUGAAGGGAGCUCCCU	21	SDI-MIR396C	UUCCACAGCUUUCUUGAACUU 21
tae-MIR319	-UUGGACUGAAGGGAGCUCCCU	21	gma-MIR396D	UUCCACAGCUUUCUUGAACUU 21
aly-MIR319a	-UUGGACUGAAGGGAGCUCCCU	21	ptc-MIR396d	UUCCACAGCUUUCUUGAACUU 21
rco-MIR319c		21	ptc-MIR396e	
rco-MIR319a		21	mtr-MIR396a	UUCCACAGCUUUCUUGAACUU 21
age-MIR319		21	bna-MIR396a	UUCCACAGCUUUCUUGAACUU 21
vvi-MTR319f		21	pta-MIR396	UUCCACAGCUUUCUUGAACUU 21
vvi -MTR319c		21	gma-MIR396c	UUCCACAGCUUUCUUGAACUU 21
wwi_MTP319b		21	aqc-MIR396b	UUCCACAGCUUUCUUGAACUU 21
ctr-MIR319D		20	ccl-MIR396	UUCCACAGCUUUCUUGAACUU 21
nte-MTD210d		20	rco-MIR396	UUCCACAGCUUUCUUGAACUU 21
ptc-MIRS19d		20	aly-MIR396b	UUCCACAGCUUUCUUGAACUU 21
ptc-MIR319C		20	vvi-MIR396a	UUCCACAGCUUUCUUGAACUA 21
ptc-MIR319b	-UUGGACUGAAGGGAGCUCCC-	20	pab-MIR396a	UUCCACAGCUUUCUUGAACUA 21
ptc-MIR319a	-UUGGACUGAAGGGAGCUCCC-	20	VVI-MIR396b	UUCCACAGCUUUCUUGAACU- 20
gma-MIR319b	-UUGGACUGAAGGGAGCUCCC-	20	CS1-MIR396a	UUCCACAGCUUUCUUGAACUG 21
gma-MIR319a	-UUGGACUGAAGGGAGCUCCC-	20	alv-MIR396a	UUCCACAGCUUUCUUGAACUG 21
mtr-MIR319b	-UUGGACUGAAGGGAGCUCCC-	20	arc-MIR396a	UUCCACAGCUUUCUUGAACUG 21
vvi-MIR319g	-UUGG <mark>ACUGAA</mark> GGG <mark>A</mark> GCUCCCA	21	lia-MIR396	
mtr-MIR319	-UUGG <mark>AC</mark> UGAAGGG <mark>A</mark> GCUCCC-	20	vvi-MIR396c	UUCCACAGCUUUCUUGAACUG 21
ppt-MIR319a	CUUGGACUGAAGGGAGCUCC	20	vvi-MIR396d	UUCCACAGCUUUCUUGAACUG 21
ppt-MIR319b	CUUGGACUGAAGGGAGCUCC	20	ghr-MIR396b	UUCCACAGCUUUCUUGAACUG 21
sly-MIR319	CUUGGACUGAAGGGAGCUCC	20	ghr-MIR396a	UUCCACAGCUUUCUUGAACUG 21
ppt-MIR319c	CUUGGACUGAAGGGAGCUCCC-	21	mtr-MIR396b	UUCCACAGCUUUCUUGAACUG 21
ppt-MIR319d	CUUGGACUGAAGGGAGCUCCC-	21	ptc-MIR396b	UUCCACAGCUUUCUUGAACUG 21
ppt-MIR319e		21	ptc-MIR396a	UUCCACAGCUUUCUUGAACUG 21
pta-MIR319		19	zma-MIR396a	UUCCACAGCUUUCUUGAACUG 21
ath-MIR319c		21	zma-MIR396b	UUCCACAGCUUUCUUGAACUG 21
DVU-MTR319c		21	gma-MIR396a	UUCCACAGCUUUCUUGAACUG 21
rco-MIR319d		21	sol-MIR396	UUCCACAGCUUUCUUGAACUG 21
alv-MIR319c		21	sbi-MIR396b	UUCCACAGCUUUCUUGAACUG 21
aly-MTR319d		21	osa-MIR396b	UUCCACAGCUUUCUUGAACUG 21
nto-MTP319a		20	osa-MIR396a	UUCCACAGCUUUCUUGAACUG 21
wwi_MTP210a		21	ath-MIR396a	UUCCACAGCUUUCUUGAACUG 21
vvi-MIRS19e		21	ptc-MIR396g	UUCCACGGCUUUCUUGAACUU 21
CSI-MIK319	UUGGACUGAAGGGAGCUCCU-	21	pab-MIR396b	UUCCACGGCUUUCUUGAACUU 21
ptc-MIR319e	-UUGGAEUGAAGGGAGCUCCU-	20	pab-MIR396c	UUCCACGGCUUUCUUGAACUU 21
ptc-MIR319f	-UUGGACUGAAGGGAGCUCCU-	20	smo-MIR396	UUCCACGGCUUUCUUGAACU- 20
ptc-MIR319h	-UUGGACUGAAGGGAGCUCCU-	20	ptc-MIR396f	UUCCACGGCUUUCUUGAACUG 21
	************			***** **********

Supplemental Figure 4. Sequence alignment of miR319 and miR396 from different species. (A) miR319 (B) miR396. Sequences were retrieved from miRbase (<u>http://www.mirbase.org</u>) and aligned using ClustalW with default settings. ath - *Arabidopsis thaliana*; aly - *Arabidopsis lyrata*; ptc – *Populus trichocarpa*; osa – *Oriza sativa*; vvi – *Vitis vinifera*; sly – *Solanum lycopersicum*; mtr – *Medicago truncatula*; lja - *Lotus japonicus*; ppt - *Physcomitrella patens*; rco – *Ricinus communis*; ctr - ; gma - *Glycine max*; sbi - *Shorgum bicolor*; pta – *Pinus taeda*; Zma - *Zea maize*; csi - *Citrus sinensis*; bna-*Brassica napus*; aqc - *Aquilegia caerulea*; pab – *Picea abies*; sof – *Saccharum officinarum*; smo – *Selaginella moellendorffii*. Accession numbers for these sequences are given in Supplemental Table 3.

Supplemental Figure 5. Expression patterns of miR396 in developing leaves. Full length small RNA gel blots showing the expression of miR396 in the distal (d) and proximal (p) halves of developing leaves with positive allometry, negative allometry, and isometry. Molecular weights (M) of single-stranded RNA markers are indicated. All blots were repeated 3-5 times and similar results were obtained. The plant species are indicated above the blots. Numbers above the blots indicate leaf length in cm. Ethidium bromide-stained gels are shown below the blots as loading controls.

Supplemental Figure 6. Quantification of relative distribution of miR396 in developing leaves. Left panels show the small RNA gel blots and the right panels show the quantification of band intensities. Levels of miR396 were normalized relative to *U6* RNA. The ratios of the expression levels in the distal (d) to the proximal (p) halves are indicated above the bars. All blots were repeated 3-5 times and similar results were obtained. The plant species are indicated above the blots. Numbers above the blots indicate leaf length in cm.

Supplemental Figure 7. Conservation of the miR396 target sequence in the *GRFs.* (A) Alignment of partial mRNA sequences of miR396-targeted *GRFs* from different species. The conserved miRNA target region is highlighted in orange while other conserved residues are highlighted in yellow. (B) Alignment of protein sequences of the miR396-targeted GRFs. The miRNA-targeted region is highlighted in orange and the characteristic WRC domain is highlighted in yellow. Sequences from species novel to this study are written in blue and show highest sequence similarity with At-GRF2. (C) Full-length RNA gel blots showing the distribution of miR396-targeted *GRFs* in growing leaves with positive allometry (*T. stans*), negative allometry (*C. variegatum*), and isometry (*B. purpurea*). Ethidium bromide-stained gels are shown below the blots to indicate loading. Leaf lengths (in cm) are indicated above the blots. d and p refer to distal and proximal halves of the leaves, respectively.

Supplemental Figure 8. Promoter activity of At-GRF5. (A) GUS histochemical staining of *pGRF5:GUS* leaves showing the promoter activity of *GRF5* in the 5th leaf of *Arabidopsis*.

Supplemental Figure 9. Expression of miR396 and phenotypes of transgenic *Arabidopsis* plants with altered miR396 expression. (A) Small RNA gel blot showing the altered expression of miR396 in three independent *pGRF5:miR396* transgenic lines (#5, #6 and #9) and WT with the indicated genotypes. Values for relative expression of miR396 normalized to *U6* are indicated below the blots. (B) Rosettes of 20-day-old *Arabidopsis* plants with the indicated genotypes. (C) Area of the 5th leaf in 20-day-old plants of indicated genotypes (*n*=25-30; average \pm SD). Leaf areas for the transgenic lines were calculated from three independent lines for each genotype. The P value represents the results of two-tailed Mann-Whitney test on the two groups of data sets using GraphPad Prism (Version 5.01). (D) 5th leaf from 20-day-old plants of indicated genotypes. Scale bars in (B, D), 1 cm. (E) RT-qPCR analysis of expression levels of *GRFs*, *CYCD3;2* and *H4* in 10-day-old rosettes of WT and *pGRF5:miR396a* plants. The expression levels were normalized to *ACTIN-2* expression (*n*=3; average \pm SD).

Supplemental Figure 10. Effects of altered miR396 expression on cell expansion. (A-B) Epidermal cell size of the 5th leaf in the *pMIR396a:STTM396* and WT plants (*n*=40-90; average \pm SD). (C) Epidermal cell size of the 5th leaf in the *pMIR396a:STTM396* and WT plants (*n*=50-100; average \pm SD). Cell sizes were measured near the tip, middle, and base of the leaves. Unpaired t-test was carried out using GraphPad Prism software to compare the datasets.*, p≤0.05; ***, p≤0.005. P-value summaries are shown only above the datasets that showed significant differences.

Supplemental Figure 11. Effect of miR396 mis-expression on *CYCB1;1* **expression.** GUS reporter assay showing the expression of *CYCD3;2* (A) and *CYCB1;1* (B, C) in young WT (A, B) and *pGRF5:miR396* (C) leaves. Note that the GUS activity is completely absent from the ~1 mm long *pGRF5:miR396* leaf while it is still present at the base of WT leaf of similar growth stage.

Supplemental Figure 12. Different allometric growth patterns in leaves with similar final shapes. (A) The leaves of *P. pendula* and *P. longifolia* have similar final shape and size but show isometry and negative allometry, respectively, during growth. Numbers indicate leaf length. (B) Leaves with similar final shapes that show different allometric growth patterns.

Supplemental Figure 13. Determination of allometric growth patterns in leaves using cell size difference. Under each allometry class, the upper panels show cell size measurements near the tip, mid, and base of growing leaves and the lower panels show the ratio of average epidermal cell area near the tip to that of the base. The species with cell size ratio 0.9-1.2 were classified under isometry and the species with the ratio <0.7 for at least three growth stages were assigned to negative allometry. The species with tip:base cell size ratios \geq 1.5 for three or more growth stages were assigned to positive allometry. This classification is supported by the α values shown in Figure 2.

Supplemental Table 1. List of species used in the study

	Species	Order	Family	Allometry
1	Schefflera arboricola	Apiales	Araliaceae	Isometry
2	Chromolaena odorata	Asterales	Asteraceae	Positive
3	Dahlia x hybrid	Asterales	Asteraceae	Positive
4	Gaillardia aristata	Asterales	Asteraceae	Positive
5	Helianthus annuus	Asterales	Asteraceae	Positive
6	Lactuca sativa	Asterales	Asteraceae	Positive
7	Raphanus sativus	Asterales	Asteraceae	Positive
8	Sonchus oleraceus	Asterales	Asteraceae	Positive
9	Syndrella nodiflora	Asterales	Asteraceae	Positive
10	Arabidopsis thaliana	Brassicales	Brassicaceae	Positive
11	Brassica juncea	Brassicales	Brassicaceae	Positive
12	Cleome speciosa	Brassicales	Capparidaceae	Positive
13	Spinacia oleracea,	Caryophyllales	Amaranthaceae	Positive
14	Momordica pudica	Cucurbitales	Cucurbitaceae	Positive
15	Impatiens balsamina	Ericales	Balsaminaceae	Positive
16	Bauhinia purpurea	Fabales	Fabaceae	Isometry
17	Brownea coccinea	Fabales	Fabaceae	Isometry
18	Butea monosperma	Fabales	Fabaceae	Isometry
19	Cassia spectabilis	Fabales	Fabaceae	Isometry
20	Erythrina standleyana	Fabales	Fabaceae	Isometry
21	Erythrina umbrosus	Fabales	Fabaceae	Negative
22	Samanea saman	Fabales	Fabaceae	Isometry
23	Saraca asoca	Fabales	Fabaceae	Isometry
24	Alstonia scholaris	Gentianales	Apocynaceae	Isometry
25	Calotropis gigantea	Gentianales	Apocynaceae	Positive
26	Catharantus roseus	Gentianales	Apocynaceae	Positive
27	Coffea arabica	Gentianales	Rubiaceae	Isometry
28	Ixora coccinea	Gentianales	Rubiaceae	Isometry
29	Mussaenda glabra	Gentianales	Rubiaceae	Positive
30	Neolamarckia cadamba	Gentianales	Rubiaceae	Isometry
31	Plumeria rubra	Gentianales	Apocynaceae	Isometry
32	Tabernaemontana divaricata	Gentianales	Apocynaceae	Isometry
33	Antirrhinum majus	Lamiales	Plantaginaceae	Positive
34	Mentha arvense	Lamiales	Lamiaceae	Positive
35	Salvia coccinea	Lamiales	Lamiaceae	Positive
36	Torenia glabra	Lamiales	Scrophulariaceae	Positive
37	Citharexylum fruiticosum	Lamiales	Verbenaceae	Positive
38	Hemigraphis colorata	Lamiales	Acanthaceae	Positive
39	Lantana camara	Lamiales	Verbenaceae	Positive
40	Leucas stelligera	Lamiales	Lamiaceae	Positive
41	Nyctanthes arbor-tritis	Lamiales	Oleaceae	Positive
42	Ocimum tenuiflorum	Lamiales	Lamiaceae	Positive
43	Spathodea campanulata	Lamiales	Bignoniaceae	Isometry
44	Tecoma stans	Lamiales	Bignoniaceae	Positive

-	Species	Order	Family	Allometry
45	Cananga odorata	Magnoliales	Annonaceae	Isometry
46	Polyalthia longifolia	Magnoliales	Annonaceae	Negative
47	Polyalthia pendula	Magnoliales	Annonaceae	Isometry
48	Codiaeum variegatum	Malpighiales	Euphorbiaceae	Negative
49	Abutilon indicum	Malvales	Malvaceae	Isometry
50	Ceiba pentandra	Malvales	Bombacaceae	Isometry
51	Ceiba speciosa	Malvales	Bombacaceae	Isometry
52	Hibiscus rosa-sinensis	Malvales	Malvaceae	Isometry
53	Callistemon viminalis	Myrtales	Myrtaceae	Isometry
54	Psidium guajava	Myrtales	Myrtaceae	Isometry
55	Syzygium jambos	Myrtales	Myrtaceae	Bidirectional
56	Terminalia catappa	Myrtales	Combretaceae	Negative
57	Artocarpus heterophyllus	Rosales	Moraceae	Isometry
58	Broussonetia papyrifera	Rosales	Moraceae	Isometry
59	Ficus auriculata	Rosales	Moraceae	Isometry
60	Ficus benghalensis	Rosales	Moraceae	Isometry
61	Ficus religiosa	Rosales	Moraceae	Isometry
62	Aeglem armelos	Sapindales	Rutaceae	Isometry
63	Azadirachta indica	Sapindales	Meliaceae	Positive
64	Cedrela odorata	Sapindales	Meliaceae	Isometry
65	Citrus grandis	Sapindales	Rutaceae	Isometry
66	Mangifera indica	Sapindales	Anacardiaceae	Isometry
67	Capsicum annuum	Solanales	Solanaceae	Positive
68	Solanum lycopersicum	Solanales	Solanaceae	Positive
69	Nicotiana tabacum	Solanales	Solanaceae	Positive
70	Nycandra physaloides	Solanales	Solanaceae	Positive
71	Petunia x hybrid	Solanales	Solanaceae	Positive
72	Solanum nigrum	Solanales	Solanaceae	Positive
73	Datura metel	Solanales	Solanaceae	Positive
74	Heliotropicum indicum	unplaced	Boraginaceae	Positive
75	Dillenia indica	unplaced	Dilleniaceae	Negative

			Methods applied to classify patt		ify pattern
	Creater	Allemetry	Distribution of	Growth ratio	Cell size
	Species	Anometry	spots	determination	distribution
- 1	Chromoloono odoroto	Besitive			
2	Chromolaena odorala	Positive			
3		Positive			
4		Positive			
5	Hellanthus annuus	Positive			
6	Lactuca sativa	Positive			
/	Raphanus sativus	Positive			
8	Sonchus oleraceus	Positive			
9	Syndrella nodiflora	Positive			
10	Arabidopsis thaliana	Positive			
11	Brassica juncea	Positive			
12	Cleome speciosa	Positive			
13	Spinacia oleracea,	Positive			
14	Momordica pudica	Positive			
15	Impatiens balsamina	Positive			
16	Bauhinia purpurea	Isometry			
17	Brownea coccinea	Isometry			
18	Butea monosperma	Isometry			
19	Cassia spectabilis	Isometry			
20	Erythrina standleyana	Isometry			
21	Erythrina umbrosus	Negative			
22	Samanea saman	Isometry			
23	Saraca asoca	Isometry			
24	Alstonia scholaris	Isometry			
25	Calotropis gigantea	Positive			
26	Catharantus roseus	Positive			
27	Coffea arabica	Isometry			
28	Ixora coccinea	Isometry			
29	Mussaenda glabra	Positive			
30	Neolamarckia cadamba	Isometry			
31	Plumeria rubra	Isometry			
32	Tabernaemontana divaricata	Isometry			
33	Antirrhinum majus	Positive			
34	Mentha arvense	Positive			
35	Salvia coccinea	Positive			
36	Torenia glabra	Positive			
37	Citharexylum fruiticosum	Positive			
38	Hemigraphis colorata	Positive			
39	Lantana camara	Positive			

			Methods applied to classify pattern		
	Species	Allometry	Distribution of spots	Growth ratio determination	Cell size distribution
40	Leucas stelligera	Positive			
41	Nyctanthes arbor-tritis	Positive			
42	Ocimum tenuiflorum	Positive			
43	Spathodea campanulata	Isometry			
44	Tecoma stans	Positive			
45	Cananga odorata	Isometry			
48	Codiaeum variegatum	Negative			
49	Abutilon indicum	Isometry			
50	Ceiba pentandra	Isometry			
51	Ceiba speciosa	Isometry			
52	Hibiscus rosa-sinensis	Isometry			
53	Callistemon viminalis	Isometry			
54	Psidium guajava	Isometry			
55	Syzygium jambos	Bidirectional			
56	Terminalia catappa	Negative			
57	Artocarpus heterophyllus	Isometry			
58	Broussonetia papyrifera	Isometry			
59	Ficus auriculata	Isometry			
60	Ficus benghalensis	Isometry			
61	Ficus religiosa	Isometry			
62	Aeglem armelos	Isometry			
63	Azadirachta indica	Positive			
64	Cedrela odorata	Isometry			
65	Citrus grandis	Isometry			
66	Mangifera indica	Isometry			
67	Capsicum annuum	Positive			
68	Solanum lycopersicum	Positive			
69	Nicotiana tabacum	Positive			
70	Nycandra physaloides	Positive			
71	Petunia x hybrid	Positive			
72	Solanum nigrum	Positive			
73	Datura metel	Positive			
74	Heliotropicum indicum	Positive			
75	Dillenia indica	Negative			

Highlighted cells indicate the method/s applied to assign the growth patterns

Supplemental Data. Das Gupta et al. (2015). Plant Cell 10.1105/tpc.15.00196 Supplemental Table 3. Accession numbers of sequences used in the study

Growth-regulating factor 2 (GRF2) Arabidopsis thaliana NM 119936	
GRF domain class transcription factor (<i>GRF2</i>) Arabidopsis lyrata XM 0028668	87
Growth-regulating factor 2 (GRF2B2) Brassica napus JN831663	-
Growth-regulating factor 2J (GRF2J) Brassica rapa JN698987	
GRF domain class transcription factor (GRF2) Populus trichocarpa XM 0023206	32
GRF domain class transcription factor (GRF2) Vitis vinifera XM 0036353	28
GRF domain class transcription factor (GRF2) Malus x domestica HM122562	
GRF domain class transcription factor (GRF2) Glycine max XM 0035493	19
GRF domain class transcription factor (GRF2) Ricinus communis XM 0025100	06
GRF domain class transcription factor (GRF2) Capsicum annuum FJ997852	
Growth-regulating factor 2 (Ts-GRF2) Tecoma stans KF188429	
Growth-regulating factor 2 (Bh-GRF2) Bauhinia purpurea KF042295	
Growth-regulating factor 2 (Cv-GRF2) Codiaeum variegatum KF042296	
Histone H4 (Ts-H4) Tecoma stans KF042290	
Histone H4 (Bp-H4) Bauhinia purpurea KF042292	
Histone H4 (Cv-H4) Codiaeum variegatum KF042291	
Actin 1 (Ts-ACT1) Tecoma stans KF188428	
Actin 1 (Bp-ACT1) Bauhinia purpurea KF042293	
Tubulin 1 (Cv-TUB1) Codiaeum variegatum KF042294	
miR396b Arabidopsis thaliana MI0001014	
miR396c Oryza sativa MI0001048	
miR396c Sorghum bicolor MI0001540	
miR396b Glycine max MI0001786	
miR396c Populus trichocarpa MI0002327	
miR396d Populus trichocarpa MI0002328	
miR396e Populus trichocarpa MI0002329	
miR396a Medicago truncatula MI0005621	
miR396a Brassica napus MI0005773	
miR396 Pinus taeda MI0005788	
miR396c <i>Glycine max</i> MI0010572	
miR396b Aquilegia caerulea Mi0012095	
miR396 Citrus clementine MI0013304	
miR396 Ricinus communis Mi0013418	
miR396b Arabidopsis lyrata Mi0014582	
miR396a Aquilegia caerulea Mi0012094	
miR396 Lotus japonicus Mi0010581	
miR396C Vitis vinifera Mi000/955	
miR3960 Vitis Vinifera Mi0006571	
miR319a Arabidopsis Inaliana Mi0000544	
miR3190 Arabidopsis Inaliana Mi0000545	
miR3190 Arabidopsis lyrata Mi0014519	
miR319 Initcuiti destrutti Mi0010455	
miR3198 Alabidupsis lylata Mi0014516	00
miCinus communis MIMAT00141	00
miD210	01
miR319 Aquilegia Caerulea Mi0012091	04
miR319C Vilis Villera VillA100057	04
miP210 Citrue trifoliata MINO12202	05
miR319c Donulus trichoceros MI0003000	
miR319d Populus trichocarpa MI0002290	
miR319h Populus trichocarpa MI0002299	
miR319a Glycine may MI0002297	
miR319h Glycine max MI0001783	
miR319 Medicado truncatula MI0001751	
miR319a Physical and a MI0001731	
miR319h Physicial a patens MI0003490	
miR319 Solanum lycopersicum MI0009497	

Gene	Species	Accession
miR319	Pinus taeda	MI0005786
miR319	Phaseolus vulgaris	MIMAT0011176
miR319	Citrus sinensis	MIMAT0018459

Supplemental Table 4. Primers used in the study

SI.	Primer	Sequence 5'-3'	Forward/	Purpose
1		GAGYTDGABCAHCABGCVTTGATC	FP	Decenerate primer for cloping
1	1 02047			GRF
2	P02048	CWCARTGGRYKGAGYTRGARCAHC	FP	Degenerate primer for cloning GRF
3	P02049	CTTYTGHARVACHCCHGTNGGRGA	RP	Degenerate primer for cloning GRF
4	P02050	TTTYTGHARVACHCCHGTNGGRGA	RP	Degenerate primer for cloning GRF
5	P02233	ATGGAYCTNGARCCNGGNACNATGG	FP	Degenerate primer for cloning TUBULIN
6	P02234	GRGARGARTAYCCNGAYMGRATGATG	FP	Degenerate primer for cloning TUBULIN
7	P02235	CRTTCATRTTRCTYTCNGCYTCNG	RP	Degenerate primer for cloning
8	P02236	CATNCCYTCNCCDGTRTACCARTG	RP	Degenerate primer for cloning
9	P02237	GGDACNGGHATGGTBAARGCBGG	FP	Degenerate primer for cloning
10	P02238	CCWCCDATCCAGACRCTRTAYTTYC	RP	Degenerate primer for cloning
11	P02124	GGNGAYGARGCNCARTCHAARMGDGG	FP	Degenerate primer for cloning
12	P02125	CRTGDATDCCHGVDGCTTCCATHCC	RP	Degenerate primer for cloning
13	P00658	ATGTCDGGNMGNGGVAARGGMGGNAARGG	FP	Degenerate primer for cloning HISTONE4
14	P00659	CCDCCRAANCCRTANAGDGTNCKNCC	RP	Degenerate primer for cloning
15	P02237	GTCATCCTTGCGCAGGGGGCCATGC		Probe sequence for <i>A. thaliana</i>
16	P01524	A <mark>GAATTC</mark> GCCGTCGAGTGTGAGTTTAGTCC	FP	Clone miR396a promoter from
17	P01525	A <mark>GGATCC</mark> CAGAGAGGGGTCATGTAGAGCAGA	RP	Clone miR396a promoter from A thaliana (Bam HI)
18	P01503	A <mark>TCTAGA</mark> CTATCGACCATCTTCCTTCTCAC	FP	Clone miR396a hairpin from A.
19	P01504	TTT <mark>CTGCAG</mark> CATAAACACCGATTAAACTCAT	RP	Clone miR396a hairpin from A.
20	P01564	ACCCGGGCCGTGGTCATCGCAAGGTAACC	FP	Clone <i>GRF5</i> promoter from <i>A.</i>
21	P01529	A <mark>GGATCC</mark> GTTCTCCCGCTACTTCCACTTAG	RP	Clone <i>GRF5</i> promoter from <i>A.</i>
22	P02258	CGAGCGTGGGTACTCTTTCACC	FD	aBT-PCB for BpACT1
22	P02250	GAAGAGTACTTCAGGGGCAGCGG	RP	aBT-PCB for <i>BpACT1</i>
24	P02260	CCTTGTCCCATTCCCTCGGTTG	FP	aBT-PCB for CvTUB1
25	P02261	GCCGTGACGAGGATCAGCAGC	RP	aBT-PCB for CvTUB1
26	P02262	GATCTCTACGGCAACATTGTACTCAG	FP	aBT-PCB for $TsACT1$
20	P02262	CCTCCTCCCACCACCTTAATC		aBT-PCB for TeACT1
28	P02203	GTCCATCCCTGTGGCTCCCC	FD	aBT_PCB for TecePE2
20	P02265	CGGTTCGCCAAGATCGTCACTC	RP	aBT-PCB for TeCRE2
20	D02200		ED	aBT_PCB for $BpCPE^2$
31	P02200	GTGACGCCATCCCCTCATTCCC	RP	$aBT_PCB \text{ for } BpGPE^2$
32	P02268	GTGAACGCCATATGAACAGGGGC	FP	aRT-PCR for <i>CvGRF2</i>

Supplemental Data.	Das Gupta et al.	(2015). Plant Cell	10.1105/tpc.15.00196
		· /	

RF2 4 4 4
14 14 4
14 4
4
-
4
4
4
4
4
RF2
RF2
RF3
RF3
RF4
RF4
RF5
RF5
RF6
RF6
RF7
RF7
RF8
RF8
nd PstI)
nd PstI)

Degerate (wobble) bases for degenerate primers:

M= AC	Y= CT	N= AGCT
R= AG	K= GT	V= AGC
W= AT	D= AGT	H= ACT
S= GC	B= GCT	

Enzyme sites are highlighted in yellow