Stem Cell Reports, Volume 5 Supplemental Information

Canonical MicroRNA Activity Facilitates but May Be Dispensable for Transcription Factor-Mediated Reprogramming

Zhong Liu, Maria Skamagki, Kitai Kim, and Rui Zhao

EXTENDED FIGURE LEGEND

Figure S1. Schematic of the canonical miRNA, endo-shRNA, mirtron, and endo-siRNA biogenesis pathways, related to Figure 1-5.

Figure S2. PCR genotyping of $Dgcr8^{\Delta/\Delta}$ NSC-derived iPSC clones isolated from three independent reprogramming experiments, related to Figure 2. Note that $Dgcr8^{flox}$ alleles were completely disrupted in all analyzed iPSC clones. Arrow, $Dgcr8^{flox}$; arrow head, $Dgcr8^{\Delta}$.

Figure S3. Characterization of $Dgcr8^{\Delta/\Delta}$ iPSCs, related to Figure 3.

(A) The NSC-derived $Dgcr \delta^{\Delta/\Delta}$ iPSCs expressed pluripotency-associated markers (a) alkaline

phosphatase, (b) SSEA-1 (red), and (c) NANOG; and (c') DAPI. Scale bars, 100 µm.

(B-C) Additional karyotypes of 40, XY *Dgcr8^{Δ/Δ}* iPSCs.

(D) Characterization of transgene-free $Dgcr8^{\Delta/\Delta}$ iPSCs. (a) Bright field and (a') YFP. (b-d') The transgene-free $Dgcr8^{\Delta/\Delta}$ iPSCs expressed pluripotency-associated markers (b) alkaline phosphatase, (c) SSEA-1, and (d) NANOG; and (d') DAPI. Scale bars, 100 µm (white) and 50 µm (green).

Figure S1

Figure S2.

Table S1. Frequency of incomplete *Dgcr8* deletion in *Dgcr8*^{Δ/Δ} fibroblast reprogramming, related to Figure 1.

	# of input fibroblasts	# of iPS colonies	# of Dgcr8 ^{Δ/Δ} iPS colonies	# of incomplete deleted colonies	Reprog. efficiency (%)*
Exp. 1	50,000	2	2	0	0.004
Exp. 2	50,000	2	2	0	0.004
Exp. 3	50,000	11	9	2	0.018
Exp. 4	50,000	6	5	1	0.010
Exp. 5	50,000	1	1	0	0.002
Total		22	19	3	
% total			86.4	13.6	

*Reprogramming efficiency is determined by the ratio of $Dgcr8^{\Delta/\Delta}$ iPS colonies to input fibroblasts.

Gene	Primers	Sequence
Oct4	Oct4f Oct4r	5' – AGC TGC TGA AGC AGA AGA GGA TCA – 3' 5' – TCT CAT TGT TGT CGG CTT CCT CCA – 3'
Sox2	Sox2f Sox2r	5' – CAC ATG AAG GAG CAC CCG GAT TAT – 3' 5' – TCC GGG AAG CGT GTA CTT ATC CTT – 3'
Nanog	Nanogf Nanogr	5' – AAC CAA AGG ATG AAG TGC AAG CGG – 3' 5' – TCC AAG TTG GGT TGG TCC AAG TCT – 3'
Sox1	Sox1f Sox1r	5' – CCA AGA TGC ACA ACT CGG AGA TCA – 3' 5' – ACT TGT CCT TCT TGA GCA GCG TCT – 3'
Fgf5	Fgf5f Fgf5r	5' – ATA GCA GTT TCC AGT GGA GCC CTT – 3' 5' – ACT TAA CAC ACT GGC TTC GTG GGA – 3'
Krt18	Krt18f Krt18r	5' – ATC TGG AGT CAG AGC TGG CAC AAA – 3' 5' – TCC AGG GCA TCG TTG AGA CTG AAA – 3'
Brachyury	Brach-f Brach-r	5' – AGC TCT CCA ACC TAT GCG GAC AAT – 3' 5' – TGG TAC CAT TGC TCA CAG ACC AGA – 3'
Afp	Afp-f Afp-r	5' – AGT TTC CAG AAC CTG CCG AGA GTT – 3' 5' – TGG AAG CAC TCC TCC TTG TTG TCA – 3'
Hnf4a	Hnf4a-f Hnf4a-r	5' – TTC GGC ATG GCC AAG ATT GAC AAC – 3' 5' – TTG GTG CCC ATG TGT TCT TGC ATC – 3'
Eomes	Eomes-f Eomes-r	5' – AAG GCT TCC GGG ACA ACT ACG ATT – 3' 5' – TGA GGC AAA GTG TTG ACA AAG GGC – 3'
Dgcr8	Dgcr8f Dgcr8r	5' – GTG GAT GAA GAG GCC TTG AA – 3' 5' – TCT TGG GAG CAC AGA GAC CT – 3'
Oct4-tg	hOct4-tg-F F2A-R	5' – GCT CTC CCA TGC ATT CAA AC – 3' 5' – TTG GAC CTG GAT TTG ACT CTA C – 3'
Sox2-tg	hSox2F hSox2R	5' – CAC ATG AAG GAG CAC CCG GAT TAT – 3' 5' – GTT CAT GTG CGC GTA ACT GTC CAT – 3'
b-actin	bActin-f bActin-r	5' – TTG CTG ACA GGA TGC AGA AGG AGA – 3' 5' – ACT CCT GCT TGC TGA TCC ACA TCT – 3'
Lentiviral transgene	hOct4-tg-F hKlf4-tg-R	5' – TGT ACT CCT CGG TCC CTT T – 3' 5' – TGC TTG ACG CAG TGT CTT – 3'
Genomic control	gDgcr8-P1f gDgcr8-P1r	5' – TTT CCA ACC CAA GTC AGC AGA T – 3' 5' – AGT GCA TGT GCC ATG CTG CCA – 3'

Table S2. Primer sequences, related to Figure 3 and 4.