
SUPPLEMENTARY INFORMATION 

Supplementary Methods 

Array Data Analysis. Following hybridization, each chip passed quality assurance and 

control procedures using the Affymetrix quality control algorithms provided in 

Expressionist Refiner module (Genedata AG, Basel, Switzerland) 4. Probe signal levels 

were quantile-normalized and summarized using the GeneChip - Robust Multichip 

Averaging (CG-RMA) algorithm 1. Normalized files were imported into Partek (Partek 

Inc., St. Louis, MO, USA) and into the Expressionist Analyst module for principal 

component analysis (PCA), unsupervised clustering, and to assess significant differences 

in gene expression 5,6. The data generated by both programs showed consistent patterns. 

To develop sample size estimates for gene expression profiling, we started with 

theoretical principles and then applied empirical observations to support the sample size 

for these experiments a priori. The Canine_2.0 gene expression chip contains ~43,000 

annotated sequences derived from the 7.56x canine genome 2. These represent virtually 

every known gene and a complement of expressed sequence tags that provide strong 

redundancy for expression profiling. We next considered that False Discovery Rate 

statistical analysis provided a suitable method to set thresholds for significance of 

elevated or reduced gene expression, but additional multivariate analyses and gene set 

enrichment would add further value to the analysis. We anticipated the data might not be 

normally distributed; so, non-parametric tests might be needed. As there is no analytical 

estimate of the power of the Kruskal-Wallis test after false discovery rate corrections, an 

approximation is useful in the case of small sample sizes. We can estimate the proportion 

of times when perfect rank separation between conditions might occur by chance as 



2N!N!/(2N)!, where N is the number of samples in each group. The Power Atlas 

(http://www.poweratlas.org/), allowed us to obtain an empirical estimate that the 

imbalanced sample sets used for these experiments should provide >90% power at p = 

0.05 to identify true positives, although the power to identify true negatives could be 

lower.  

 

The correlation coefficient (r2) for expression values of all probes between the duplicated 

samples was >0.95. Probe IDs were mapped to corresponding canine Entrez Gene IDs 

using Affymetrix NetAffx EntrezGene Annotation. Prior to hierarchical clustering, 

normalized chip data were median-centered and log2-transformed. 

 

Unsupervised clustering was done using Gene Cluster 3.0 for Mac OS X (C Clustering 

Library 1.47) with correlation based on average linkage. Gene Cluster 3.0 data were 

visualized in Java TreeView 3. Two group t-tests were done to determine genes that were 

differentially expressed between groups. As with all microarray analysis, correction for 

multiple testing is required. We further selected for driver genes with the largest effect by 

restricting analysis to differentially expressed genes that showed large fold changes (>3) 

and highly significant p-values <0.001. Though batch effects were discernible between 

the two cohorts, they did not affect analysis as each cohort was analyzed independently, 

with cohort-1 used as a training-set and cohort-2 used as a validation-set. Gene 

expression data were deposited in Gene Expression Omnibus (GEO). 

 

Network identification and canonical pathway analysis of differentially expressed 



genes. Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems, Redwood City, 

CA) was used to define functions and canonical pathways specifically enriched in the sets 

of genes using BH multiple testing corrections to assess significance 4. Gene Set 

Enrichment Analysis (GSEA, http://www.broad.mit.edu/gsea/) was similarly used to 

define enriched functional pathways as described previously 6. Statistical significance 

was estimated using phenotype-based permutations, with the attained p-values adjusted 

for multiple hypothesis testing. 
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Supplementary Tables 

Table S1a. Functional pathways enriched in T-cell lymphoma (vs. B-cell lymphoma) 

Functions  p-Value 

Proliferation of lymphocytes 

Proliferation of immune cells 

Proliferation of T lymphocytes 

Immune response 

Cell death of immune cells 

8.95E-25 

4.21E-24 

3.41E-23 

1.79E-22 

2.99E-22 

 

Table S1b. Functional pathways enriched in B-cell lymphoma (vs. T-cell lymphoma) 

Functions  p-Value 

Activation of B lymphocytes 

Developmental process of B lymphocytes 

Quantity of B lymphocytes 

Proliferation of B lymphocytes 

Antibody response 

7.84E-17 

1.06E-15 

1.51E-15 

2.60E-15 

5.35E-12 

 

Table S1c. Functional pathways enriched in high-grade T-cell lymphoma (vs. low-grade 

T-cell lymphoma) 

Functions  p-Value 

Cell division process of chromosomes 

Segregation of chromosomes 

Mitosis 

1.58E-23 

2.29E-18 

1.11E-13 



Ploidy 

Cell cycle progression 

3.02E-11 

5.18E-11 

 

Table S1d. Functional pathways enriched in low-grade B-cell lymphoma (vs. high-grade 

B-cell lymphoma) 

Functions  p-Value 

Survival of T lymphocytes 

Activation of cells 

Survival of lymphocytes 

Survival of blood cells 

Cell death of immune cells 

3.19E-08 

8.58E-08 

2.52E-07 

2.54E-07 

2.60E-07 

 

 

 

Figure Legends  

Figure s1. a; Principal component analysis of normalized gene expression profiles of 

canine high- and low-grade T-cell and B-cell lymphoma reveals three molecular groups 

in canine lymphoma samples. Molecular relatedness of samples is described by distance 

in three-dimensional space as defined by three principal components of molecular 

variability. Each identifiable molecular group was labeled with a letter (a, b, c) for ease of 

identification. b; Heat map showing expression data for genes (N=859) with variance 

>1.0 and >8 fold change in at least 3 profiles. Colors represent median-centered fold 

change expression following log2 transformation (a quantitative representation of the 



colors is provided in the scale at the bottom). Upregulated genes are shown in red and 

downregulated genes are shown in green. 

 

Figure s2. Immunophenotyping of canine B-cell lymphoma. Forty-eight independent 

samples of canine B-cell lymphoma (28 high-grade tumors and 20 low-grade tumors) 

were immunophenotyped by flow cytometry using antibodies against CD3, CD5, CD21, 

and CD22. The frequency of T cells and B cells was enumerated from analysis of 

>10,000 cells per sample. The box-plot provides a visual summary of the data. The two 

groups were statistically significantly different (p=0.0079). 

 


