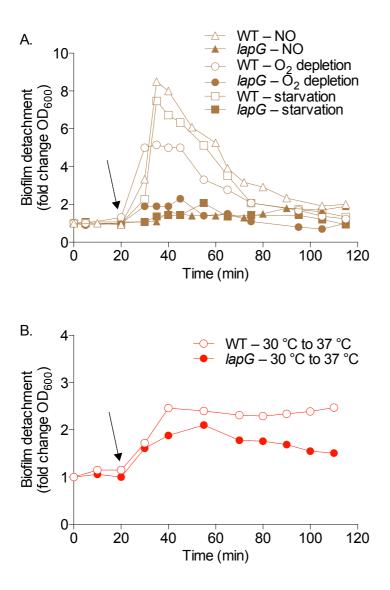
Supplementary Information

Iron oxide nanoparticle-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy

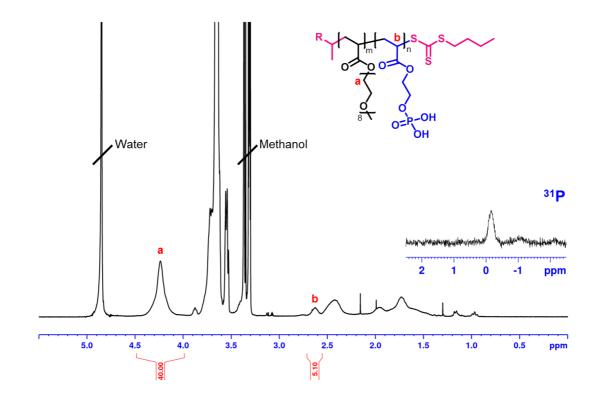
Thuy-Khanh Nguyen¹, Hien T. T. Duong^{1#}, Ramona Selvanayagam¹, Cyrille Boyer^{1*} & Nicolas Barraud^{2†*}

¹Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia

²Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia


[#]Present address: School of Chemistry, The University of Sydney, Sydney 2006, Australia

[†]Present address: Department of Microbiology, Genetics of Biofilms Unit, Institut Pasteur,


Paris 75015, France

*These authors contributed equally to this work.

Correspondence and requests for materials should be addressed to C.B. (email: cboyer@unsw.edu.au) or N.B. (email: n.barraud@melix.org).

Fig. S1. A *P. aeruginosa lapG* mutant strain, which does not disperse in response to a range of signals and cues, is not strongly affected in temperature-mediated dispersal. (A) *P. aeruginosa* wild type (WT) and *lapG* mutant biofilms were grown in continuous flow microfermentor cultures at 37 °C for 24 h. At this time, biofilm dispersal was induced by: (i) adding the nitric oxide (NO) donor sodium nitroprusside (1 mM) to the biofilm medium; (ii) switching the microfermentor aeration from air to 100% nitrogen gas to induce oxygen (O₂) depletion; or (iii) switching the biofilm effluent was collected at regular intervals and quantified at OD₆₀₀. Solid arrows indicate induction of dispersal. (B) *P. aeruginosa* wild type (WT) and *lapG* mutant biofilms were grown in continuous flow microfermentor cultures for 24 h at 30 °C before suddenly increasing the temperature to 37 °C. Solid arrows indicate temperature upshift. The data shown are representatives from at least 3 independent replicate experiments.

Fig. S2. ¹H and ³¹P spectra of purified POEGA-*b*-PMAEP (recorded in CD₃OD).

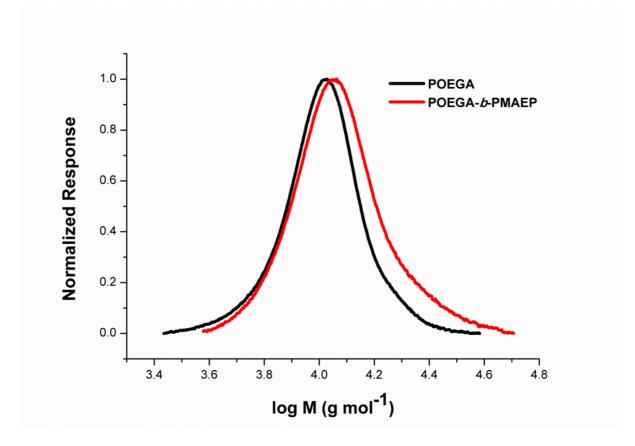


Fig. S3. SEC chromatograms of POEGA and POEGA-b-PMAEP

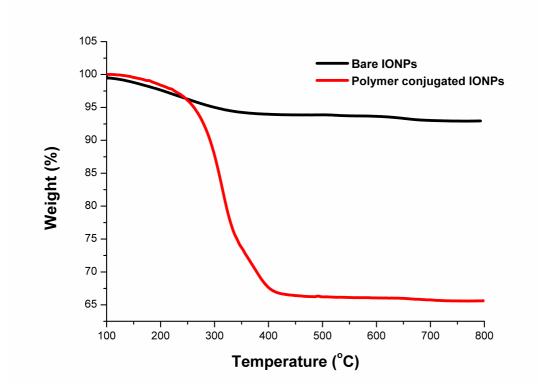
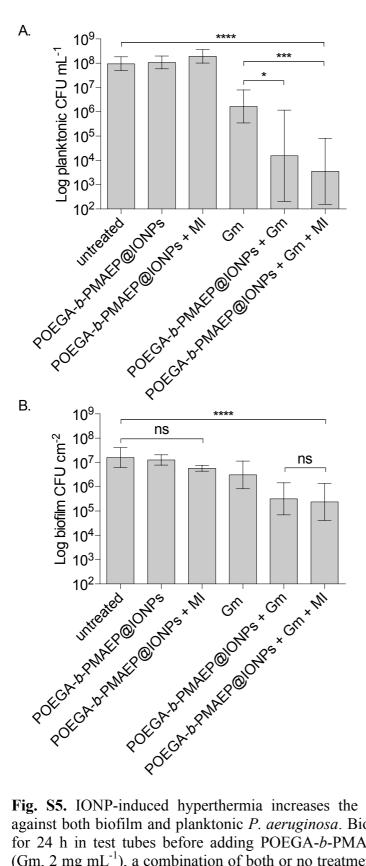
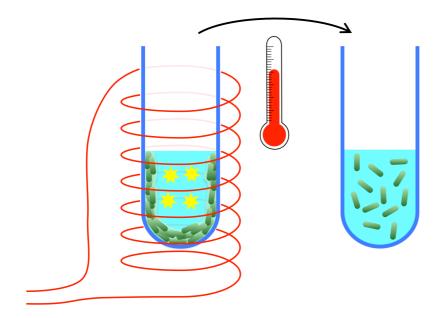




Fig. S4. TGA of bare IONPs and POEGA-*b*-PMAEP@IONPs synthesized using "grafting onto" approach.

Fig. S5. IONP-induced hyperthermia increases the efficacy of the antibiotic gentamicin against both biofilm and planktonic *P. aeruginosa*. Biofilms were grown as described before for 24 h in test tubes before adding POEGA-*b*-PMAEP@IONPs (1 mg mL⁻¹), gentamicin (Gm, 2 mg mL⁻¹), a combination of both or no treatment to the cultures, and exposing (+ MI) or not the cultures to an alternating magnetic field (6.5 T, 196 kHz) for a further 2 h. After treatment, colony-forming units (CFU) analyses were performed for both the planktonic (A) and biofilm (B) phases. MI, magnetic induction. Error bars represent standard errors (n \ge 4). Asterisks indicate statistically significant difference of treatment versus untreated culture (*, P < 0.1; ***, P < 0.001; ****, P < 0.0001; ns, not significant).

Schematic representation of IONP-mediated hyperthermia inducing biofilm dispersal.