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GENERAL MODEL OF THE MAGNETIC POINT CONTACT 

 One can imagine metallic point-contact removing some pieces of the barriers 1,2 0L  , Fig. 1 or (Fig. S1a). 

The metallic nanoparticle (NP) becomes a part of the top (left) and bottom (right) metallic FM layers connecting 

them together (transmission 1sD  ). The charge current of the metallic point-contact with orifice cross section can 

be calculated according Eq. S1, which was derived in assumption that electron energy is equal to FE , while 

F BE k T 1: 
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where e  and 
sl  are electron charge and mean free path, respectively; a is radius of the spot-like contact and Bk  is 

Boltzmann constant. k is Fourier image of radial variable  , which is the coordinate of electron on the contact 

plane;  1J x  is Bessel function. 
, ,minF sp  

, ,minF sk  is value of the Fermi momentum, where , ,minF sk  is Fermi 

wavenumber which has to be minimal (min) value between ,

L

F sk  and ,

R

F sk ;  , ,s s sF k D l  contains integration over 

,c s  which is angle between z-axis and direction of the electron velocity, where index  c L R  determines the 

contact side. 
sD  is transmission coefficient determined in range of standard definition of the quantum mechanics. 

Transmission usually is a function of the electron wavenumbers, ,c s , applied voltage V and other possible variables. 

These variables have been defined from specification of the considered problems where point-contact area can be 

exchanged by quantum object, similar to the present problem. 

 All integrals inside Eq. S2 are written in relation to variable ,L s  in order to simplify solution and integral 

limits. The total current is summation of the both spin components of the charge current I I I
 

  . The complete 

view of the first and second terms of Eq. S2 accessed in ref. 2 The first term has a simple form 
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the conduction (or Ohmic resistance, ,l l a
 

 ). All three terms of Eq. S2 are the solutions of the system for the 

quasi-classical Green functions with quantum boundary conditions. The last term  , ,df

s s sF k D l


 considers the 

gradient of the chemical potential nearby contact interface (for more technical details check ref. 1). 

 It is worth to note that bal

sF  is not a function of k and l , and this fact is an important fundamental quantum 

property of the electron in nanoscale. If take only    , , bal

s s s s sF k D l F D  then Eq. S1 can be simplified since
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Equation S3 as a ballistic part of the general Eq. S1 shows validity of the Eq. 1. In case of symmetric non-magnetic 

point-like contact L R

F Fk k ,  
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2 2 2(2 / )( / 4)Fe h k a  which coincides with Sharvin conduction limit3,4 
Sh . Thus, Eq. S3 is some kind of extension 

of Sharvin conduction limit and characterizes the quantum conduction of the quantum system which is located 

inside the contact area. The quantum physics of the system can be accounted through analytical or numerical view 

of the transmission. The conductance (Eq. S3) is different from ''classical ballistic'' one for the general case where 

1sD  , the definitions in terms of ''coherent'', ''direct'' or ''quantum-ballistic'' limits are more appropriated.   

Furthermore, in order to analyze the solution in range of the complete expression (Eq. S1) in the limit of the non-

magnetic symmetric point-contact, all terms in Eq. S2 were simplified: 
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where /K l a . In the limit when K  ( / 0a l  ), the integral is vanishing in Eq. S4 and conductance 

transformed into Sharvin limit.  

 

Figure S1. (a) Schematic plot of the point-like contact which is considered as an orifice in impenetrable wall  

(a -spot model); ( )L R

s  is chemical potential. (b) shows numerical solution of the present model for /Z Sh   and 

refined Wexler's ratio /W Sh  as function of /a l . 
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Taking into account the exact integral's asymptotic for 0K   ( /a l  ):  
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it is easy to obtain an exact diffusive solution (or Maxwell-Holm limit M ), Z M   8 / 3 ShK   2 / Va  , 

where 
V     

1 1
2 2 2 2 3/ / 3F Fe nl k e p l 

 

   is resistivity in volume [ m]  and 3 2/ 3Fn k   is electron density 

in metals. The dependence of the numerical ratio /Z Sh   on /a l  is very close to Wexler solution 

 
1

3
/ 1

8
W Sh K

K



 
  
 


    with Mikrajuddin's corrections5,6, where    ·

0

2
 sincK xK e x dx




  . Figure S1b 

clearly reveals that our model shows good matching between Sharvin and Maxwell-Holm classical limits. 

 

TEMPERATURE DEPENDENCE  

Considering the T-impact, it is noted that the ballistic conductance shows lack of dependence on T. As a 

result, the thermal heat occurs relatively far away from the contact area, i.e. on the distance larger than mean free 

path. However, Ohmic resistance (diffusive regime) depends on T since metal resistivity is sensitive to the 

temperature4. Yet the temperature impact for the simulating NP in range of double barrier system might be 

considered as indirect T-dependence of the transmission, especially for 10.1 0.46Ånk   . Transmission sD  is a 

function of nk and if the Fermi energy of NP is comparable with Bk T then nk  has the margin of the values, which 

significantly changes the conductance behavior due to conduction band broadening. 

The key parameter of our model is nk . The consideration of the system in terms of finite temperature 

depends on how corresponding energy of nk  is compared to Bk T . In range of 10.46Ånk   (corresponding energy
2 2 / 2n nE k m ) the thermal energy at room temperature is important, while for 10.1 0.26Ånk    even a few 

Kelvins is important; therefore, we have to add additional integration over nk  in the following form to get more 

correct conductance: 
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where 2

1(2) 2 /BX mk T . With increasing temperature, the T-induced band broadening destroy TMR dips and 

peaks7. For example Fig. 3c, Fig. 3e and Fig. 3f in ref. 8 clearly show how the width of resonant peak increases 

with temperature at low voltages and its amplitude slowly decreases. However the resonant TMR peak has to be 

more stable for higher temperatures in contrast to TMR suppression since nk  is larger (e.g. Fig. 3f in ref. 8 reveals 

this fact). Our simulations show classical dome-like TMR behaviors without anomalies when 10.5Ånk   and 

developed approach is valid at room temperature at this case. 
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