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I. Molecular dynamics (MD) simulation details

The lattice thermal conductivity of single-layer MoS2 (SLMoS2) is calculated by

equilibrium molecular dynamics S1. Thermal conductivity is derived from the Green-Kubo

formula S2 as
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where κ is the thermal conductivity, Bk the Boltzmann constant, V the system volume, T the

temperature, the angular bracket denoting ensemble average. iv

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are the velocity

vector, the site energy, and the position vector of atom respectively. The distance between atom i
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denote the two-body and the three-body force,

respectively.

The MD simulations are carried out utilizing LAMMPS software package S3. The Stillinger-

Weber potential, whose parameters are fitted using GULP by Jiang et al. S4, is adopted in our

simulations (shown in Table S1). An appropriate empirical potential is fundamental to obtain a

reliable MD calculation result. The phonon dispersion relations, which are extracted from two

different empirical potentials for SLMoS2, are compared with the results from DFT calculation,

as shown in Fig. S1. The potential function used in this work provides a better reproduction of

the phonon dispersion, which will assure a more reliable result on thermal conductivity.

Different from previous works on MoS2 ribbons S5, our MoS2 model is a SLMoS2 sheet. The

periodic boundary conditions are applied along the two in-plane directions. There is no inter-



layer interaction due to the single layer structure. Therefore, in the simulations, the inter-layer

van der Waals interactions are not taken into account. The two in-plane directions studied

correspond to the armchair direction and the zigzag direction.

Generally, the temperature in MD simulation, TMD, is calculated from the kinetic energy of

atoms according to the Boltzmann distribution:
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where E is the total kinetic energy, m the atomic mass, and N the number of particles in the

system, respectively.

The velocity Verlet algorithm is employed to integrate equations of motion, and the time

step is 0.5 fs. Initially, the Nose-Hoover heat reservoir is used to equilibrate the system at 300 K

for 5×105 time steps (250ps). Then, simulations run in the NPT ensemble for 500 ps (106 time

steps) to relax the structure. After relaxation, the converged values of both the cell size and the

potential energy are obtained, which makes sure that there is no stress or strain effects. Then, the

structure runs another 5 ns under NVE ensemble for relaxation. Now the system is ready for heat

flux recording. The heat current vector is calculated and recorded each 2.5 fs for 8×106 time

steps to obtain the autocorrelation function and thermal conductivity.

In Fig. S2, the black curve shows the normalized heat current autocorrelation function

(HCACF) used in Green-Kubo formula to calculate thermal conductivity, where the side length

of simulation cell is 8 units and the temperature is 300 K. Additionally, the blue curve shows the

thermal conductivity which is an integration of the HFACF. The thermal conductivity converges



to 93.55 Wm-1K-1 after around 220 ps due to the decay of the HFACF. The final thermal

conductivity is the mean value of twelve realizations with different initial conditions.

II. Finite size effect in simulations

When using Green Kubo formula to calculate thermal conductivity, the finite size effect

could arise if the simulation cell is not sufficiently large S2. Fig. 4 shows the thermal conductivity

of SLMoS2 at room temperature with different cell sizes, from 2  2  1 to 32  32  1 unit3. The

thermal conductivity shows a strong dependence on the size when it’s smaller than 8  8  1

unit3. However, it changes little when the size is larger. The simulation cell in our calculations is

selected as large as 32  32  1 units3 (34.7  30.0  0.616 nm3) which is large enough to

overcome the finite size effect.

III. The anharmonic effects of the empirical potential function

In MD simulations, the inter-atomic potential parameters are fundamental to the accuracy of

the thermal conductivity calculations. The inter-atomic potential parameters herein predict the

thermal expansion coefficient to be 4.85 × 10-6 K-1 at room temperature, which is lower than the

results of Huang et al S6 and C. Sevik S7 that is about 6.74 × 10-6 K-1 from the predictions of the

first principles. It means that this empirical potential function somewhere underestimates the real

anharmonicity and phonon-phonon scatterings. That is, the thermal conductivity would be

overestimated in our work. Moreover, an overvalued thermal conductivity results in an

underestimated ZT.



IV. Electron transport properties calculation details

We compared our DFT calculation in electron and phonon dispersion curves with previous

results. Fig. S3 shows the electron and phonon band structures. The black solid lines are from

our calculation, while the open square dots are the reference data coming from Ref. 22 of the

main article. Our results agree well with the result in Ref. 22 of the main article.

The Boltzmann transport equation (BTE) is utilized to predict electronic transport properties.

The assumptions, the constant relaxation time and the rigid band approximationS8, are used in

BTE calculationS9. These strategies in transport coefficients calculation have been verified

through previous worksS8,S10. With constant relaxation time assumption, transport coefficients for

electrons can be obtained by
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where,
kn

 is the energy eigenvalue of the nth band at points in the first Brillouin zone, )(
kn

f 

the Fermi-Dirac distribution function at temperature T,  the chemical potential,  the



relaxation time and
kn

 the group velocity, respectively. Our calculations are focused on the in-

plane transport coefficients of the two-dimensional structure. The Boltzmann equation for

transport coefficients is solved by BoltzTrap S9.

The relaxation time is a key parameter in solving Boltzmann equation. For electronic

transport in semiconductor, the relaxation time is mostly affected by scatterings, such as impurity,

boundary, and phonons. The relationship between the relaxation time and mobility (μ) is defined

as τ=m*μ/e, where m* is the effective mass. We get the average values of effective mass, 0.50m0

for electrons and 0.64m0 for holes, where m0 is the mass of electron. That is, we can obtain the

relaxation time based on the mobility.

Kim et. al predicted the mobility in MoS2 both theoretically and experimentally S11. It shows

that the experimental results are consistent with the theoretical predictions. In their theoretical

model, the impurity scatterings, acoustic phonon scatterings, and optical scatterings are all taken

into consideration, which produces comprehensive results. Therefore, their values of mobility are

used in our calculation. However, they provide values of mobility below 300 K only. We obtain

the mobility for higher temperature according to the reciprocal relationshipS12,S13. The values of

mobility for 300 K, 400 K and 500 K are fitted as 180.27 cm2V-1s-1, 117.55 cm2V-1s-1 and 79.92

cm2V-1s-1, respectively. Besides, based on the results from Kaasbjerg et. al S12, the mobility is not

sensitive to carrier concentration. Therefore, it is assumed that the mobility and relaxation time

are independent on the concentration in our calculation.

The relaxation time of n-type SLMoS2 for 300 K, 400 K, and 500 K are fitted as 5.1710-14

s, 3.3710-14 s and 2.2910-14 s, respectively. The values are in the range of the prediction based

on deformation potential theory by Fan et al.S14.



V. Thermoelectric property

With the calculated band structures, we can obtain the transport tensor of SLMoS2. In Fig.

S5, there is little difference for Seebeck coefficients along two in-plane orthogonal directions, x

and y. So, average values are taken and the SLMoS2 is treated as isotropic here.

As the Fermi level shifts from band gap to valence band, we can get the transport properties

under p-type carrier concentration with rigid band approximation. Fig. S6 shows the

thermoelectric properties when SLMoS2 is p-type doped. Compared with the results of ZT for n-

type SLMoS2 (shown in Fig. 3), the p-type has smaller ZT values, because the n-type has bigger

Seebeck coefficients.
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Table S1. Stillinger-Weber potential parameters used in MD simulations. The two-body potential

expression is
])([
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jikjkij arareV . Energy parameters are in the unit of

eV. The parameters of size are in the unit of Å.

ε σ a λ γ cosθ0 A B p q tol

Mo-S-S 6.0672 0.7590 4.1634 1.0801 0.8568 0.1525 1.0 45.4357 4 0 0.0

S-Mo-Mo 6.0672 0.7590 4.1634 1.0801 0.8568 0.1525 1.0 45.4357 4 0 0.0

Mo-Mo-Mo 3.5040 0.6097 7.0034 0.0 0.0 0.0 1.0 181.8799 4 0 0.0

S-S-S 0.4651 0.6501 5.7837 0.0 0.0 0.0 1.0 125.0923 4 0 0.0



Fig. S1 The comparison of the acoustic phonon dispersion curves from DFT and the empirical
potential functions implemented in Ref. 26 and Ref. 27 of the main article.



Fig. S2 The Normalized heat flux autocorrelation function (HFACF) and thermal conductivity (κ)

along the y direction of SLMoS2 versus correlation time. The side length of simulation cell is 8

units. The figure shows, after 220 ps, the HFACF decays close to zero and the thermal

conductivity converges.



(a)

(b)

Fig. S3 (a) The electron band structures come from our calculation and those in Ref. 22 of the

main article. (b) The phonon dispersion curves come from our calculation and those in Ref. 22 of

the main article.





Fig. S4 The chemical potential versus the carrier concentration.



Fig. S5 The Seebeck coefficients of SLMoS2 along two in-plane orthogonal directions, x and y. .



Fig. S6 The thermoelectric transport properties of p-type SLMoS2 at 300 K, 400 K and 500 K. (a)

The electrical conductivity; (b) The electronic thermal conductivity; (c) The Seebeck coefficient;

(d) The figure of merit.


