Supplementary Information

The model for cadmium binding to multiple, independent binding sites of equal affinity on Msh2-Msh6, following which the protein undergoes conformational change that alters it intrinsic fluorescence and ATPase activity, as well as *gfit*, the program used for global analysis of the data, can be downloaded from <u>http://gfit.sourceforge.net</u>.

Supplementary Methods

ATP and ATP γ S binding to Msh2-Msh6 was measured by nitrocellulose membrane binding assays (Antony and Hingorani, 2003). Membranes were treated with 0.5 N NaOH for 2 minutes, washed with water and equilibrated in Buffer B (20 mM Tris-HCl, pH 8.0, 100 mM NaCl, 5 mM MgCl₂, 5 % glycerol). In 15 µl reactions Msh2-Msh6 (1 µM) was incubated for 10 minutes in Buffer B with α^{32} P-ATP (0 – 150 µM) at 4 °C or with ³⁵S-ATP γ S (0 – 200 µM) at 25 °C, in the presence of CdCl₂ (0 – 300 µM), then 10 µl of each reaction was filtered through a membrane, followed by 150 µl buffer. Bound nucleotide on the membranes was quantified by PhosphorImager and plotted *versus* total nucleotide, and the data were fit to a quadratic equation.

Increase in turbidity (630 nm) in the presence of $CdCl_2$ was measured over time in a stopped-flow instrument by mixing 60 µl of Msh2-Msh6 (2 µM) or MutS (2 µM) with 60 µl of 400 µM – 4 mM CdCl₂ in Buffer A (final concentrations: 1 µM Msh2-Msh6 or MutS, 200 µM – 2 mM CdCl₂).

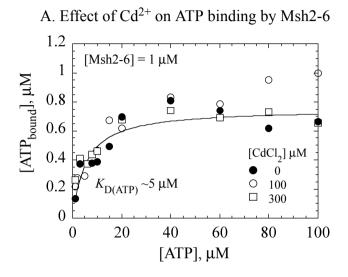
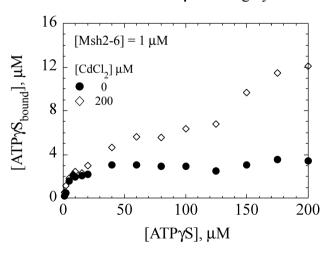

Supplementary Figure Legends

FIGURE S1: Nucleotide binding to Msh2-Msh6. (A) Nitrocellulose membrane filtration assays show $0.8 - 1 \ \mu M \ \alpha^{32}P$ -ATP binding 1 μM Msh2-Msh6 with apparent K_D of $3 - 8 \ \mu M$ at 0 (\bullet) 100 (O) and 300 μM (\Box) CdCl₂, suggesting that ATP binding is not as susceptible to cadmiummediated inhibition; a maximum stoichiometry of 1 ATP per Msh2-Msh6 with $K_D \sim 7 \ \mu M$, has been reported previously using this assay (Antony and Hingorani, 2003). (B) ³⁵S-ATP_YS binding saturates at ~2 molecules per Msh2-Msh6 (1 μM) in the absence of CdCl₂ (red), consistent with previous reports (Antony and Hingorani, 2003). In the presence of 200 μM CdCl₂, however, ATP_YS binding does not saturate even at >12 molecules per Msh2-Msh6 (green), which suggests excess ATP_YS binding to the multiple Cd²⁺ ions coordinated by ligands on Msh2-Msh6.


FIGURE S2: Mixing of Msh2-Msh6 with CdCl₂ eventually leads to increase in the turbidity of the solution (630 nm), indicating protein aggregation at very high CdCl₂ concentration of 1 mM whereas *T. aquaticus* MutS remains unchanged even at 2 mM CdCl₂.

Reference

Antony, E., and Hingorani, M.M. (2003). Mismatch recognition-coupled stabilization of Msh2-Msh6 in an ATP-bound state at the initiation of DNA repair. Biochemistry *42*, 7682-7693.

B. Effect of Cd²⁺ on ATPγS binding by Msh2-6

Supplementary Figure 1

A. Cd²⁺ effects on *S. cerevisiae* Msh2-6 structure

Supplementary Figure 2