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1 S1 Text

Code

All mapping, simulation, and analysis code is available at github.com/jeffhussmann.
Software tools used include IPython [23], pysam/samtools [18], numpy [26], scipy [22],
matplotlib [11], cython [4], pandas [19], and seaborn [27].

Mapping

All ribosome profiling experiments analyzed involve attaching a known sequence to the
3′ end of RNA footprints to which a reverse transcription primer can be annealed. Some
experiments use polyA tailing for this purpose, while others attach an oligonucleotide
linker sequence. For experiments using polyA tailing, reads were trimmed from the end
back to the first base that wasn’t an A or an N. For experiments using linker sequences,
linkers were located in reads by local alignment with the expected sequence and trimmed.
Trimmed reads were first mapped to yeast rRNA sequences with bowtie2[16], and any
reads that mapped were filtered out. Remaining reads were mapped with tophat2[15]
to the yeast genome (version EF4) and spliced transcriptome (using transcript models
from the Saccharomyces Genome Database’s .gff dated Fri Apr 11 19:50:03 2014).
Unmapped reads had any terminal stretches of A trimmed and were put through tophat2
again to recover potential mappings overlapping transcript polyA tails, although this has
minimal impact on the analysis presented here. The reverse transcription process used
to convert footprints to DNA can add untemplated bases to the end of intermediate anti-
sense DNA products, which ultimately end up located at the beginning of sequencing
reads [12]. We observed that the rate at which this happens varies considerably between
different experiments. To prevent these untemplated bases from potentially shifting the
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codon positions that reads end up assigned to, bases that mismatch the reference sequence
are trimmed from the beginning of all mappings up to the first matching base. For every
annotated coding sequence, uniquely mapped reads of length 28 or 29 were assigned to
the in-frame codon closest to the nucleotide at (0-based) offset +15 from the 5′ end of
the read; reads of length 30 were assigned to the in-from codon closest to offset +16.

Computing mean relative enrichments

To describe the computation of mean relative enrichments more formally, let g be an
index over genes. Let lg be the length in codons of gene g’s coding sequene. Let cg,i be
the codon identity at position i in gene g, Let rg,i be the count of uniquely mapped reads
assigned to this codon position. Let d be the number of codons to be exclude from the
edge of each gene. For each gene consisting of at least 2d + 1 codons, so that there is
something left after excluding d from the beginning and the end, compute the mean read
count over all eligible positions in a gene

Mg =

lg−d∑
i=d

rg,i

lg − 2d
(1)

and define the relative enrichment at each positions as

eg,i =
rg,i
Mg

. (2)

For a given codon identity I and offset F , the stratified set of all eligible positions located
exactly that offset downstream of an occurrence of that codon identity is

sI,F = {(g, i) : d < i < lg − d, cg,i−F = I}. (3)

The mean relative enrichment at the stratified set of such positions is therefore∑
(g,i)∈sI,F

eg,i

|sI,F |
. (4)

When a gene has a small number of reads mapped to it, the denominator in the
expression for eg,i is small and the values produced by this expression are noisy. Maxi-
mizing signal-to-noise in mean relative enrichments is therefore a balancing act between
including as many genes as possible in order to maximize the number of codon positions
being averaged over while minimizing the effect of noisy relative enrichment values from
lowly-expressed genes. This issue is particularly pronounced in the mean relative en-
richment profiles around non-optimal codons (e.g. CGA), for which a disproportionate
share of occurrences of the codon identity are in lowly-expressed genes. To navigate this
balance, for each experiment, we excluded genes for which Mg < 0.1 - that is, genes with
an average read density of less than 1 read per 10 codons across the eligible region of the
gene. Because the number of useful sequencing reads produced by each experiment varies
considerably due to differences in the number of raw reads produced and in the efficiency
with which uninteresting rRNA contaminants are removed, the exact set of genes passing
this filter varies from experiment to experiment. Profiles of mean relative enrichments in
all experiments are qualitatively unchanged but noisier if we instead include every gene
with a nonzero number of mapped reads in each experiment.
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Simulation details

In order to evaluate the ability of different models of CHX activity to produce pat-
terns observed in experimental data, we developed a simple event-driven simulator of
the movement of ribosomes along coding sequences. We made several simplifying as-
sumptions about translation in this simulation. First, we assume the elongation time
at each position depends only on the codon identity in the A-site of a ribosome. Sec-
ond, we assume that the rate of initiation for each mRNA is a constant (but potentially
gene-specific) value - that is, we do not model competition for a pool of ribosomes be-
tween different mRNAs. Third, we measured time in arbitrary units not grounded in any
absolute measurements.

The central object in the simulation is a representation of a single copy of a particular
mRNA copy of a coding sequence. For each such mRNA object, multiple ribosomes are
tracked as they simultaneous advance along the coding sequence. A priority queue of
future events indexed by the time at which each event is scheduled to occur is maintained
to determine the ordering of events. Evolution of the system is carried out by popping
events off off the priority queue, processing the events, and then inserting any consequent
events into the queue.

Simulation for each mRNA object begins with an immediate initiation event at t = 0.
After each initiation event, the time interval until the next attempted initiation is drawn
from an exponential distribution with the rate parameter set to a user specified, poten-
tially gene-specific value. Although we carried out simulations in which the initiation rate
of each gene is proportional to the ratio of footprint RPKM to mRNA-seq RPKM from
matched experiments (the so-called translational efficiency of the gene [13]), the simula-
tion results shown in the main text have the initiation rate of every gene set uniformly
to 0.01. Ribosomes are always assigned to the single codon identity in their A-site, but
each ribosome occludes 5 codon positions upstream and 4 codon positions downstream of
this. After initiation, the amount of time a ribosome waits at each codon position before
attempting to advance is exponentially distributed with a rate parameter determined
by the codon identity in the A-site. Ribosomes are prevented from advancing if doing
so would cause its A-site to be within 4 codons of the next downstream ribosome’s left
edge. If this occurs, a new waiting time is drawn, after which the ribosome will attempt
to advance again. To efficiently evolve a single instance of a coding sequence to steady
state, events are processed until the first ribosome hits the stop codon. If trunoff is the
point in time at which this happens, a stopping time is chosen uniformly at random from
the interval [trunoff, 2trunoff]. This stopping time is added to the priority queue as an event,
and events are processed until this event is reached.

After steady state is reached, different potential CHX mechanisms can be introduced.
Two such mechanisms are considered here. In the first, at the instant CHX is introduced
to the system, each ribosome is assigned an amount of time to wait until a CHX molecule
first arrives at it and irreversibly halts it. The mean of this waiting time distribution is the
mechanistic knob that is assumed to change with CHX concentration. Every ribosome
that initiates after CHX is introduced is also assigned a waiting time in the same way. The
system is evolved until every ribosome has been arrested and the initiation site is occluded
by an arrested ribosome so that no further initiation is possible. The resulting positions of
ribosomes are then recorded as simulated read counts. The only way in which this model
of CHX action produces sampled positions that differ from the pre-CHX steady state is
when stochastic differences in the arrival times of CHX at sequential ribosomes cause

3



the upstream ribosome to be halted by running into the arrested ribosome in front of it
instead of by the arrival of CHX. The average spacing between ribosomes is determined by
the ratio between the rate of initiation and elongation rates. The extent to which stalling
occurs can be tuned by controlling the ratio between this average spacing and the mean
time until CHX arrival. If this ratio is small, pairs of sequential ribosomes frequently
experience a large enough difference in CHX arrival times for the trailing ribosome to
close the gap between them. This results in spikes in mean enrichment at offsets that are
multiples of 10 upstream (i.e. at negative offsets in the profiles of mean enrichment plotted
throughout the paper) and broad, low-level enrichment downstream of any slow codon
identity but no coherent downstream peaks. Mean enrichments at the A-site experience
a contraction towards one, reflecting the fact that the codon identity in the A-site of a
ribosome that was stopped by running into the ribosome ahead of it is essentially drawn
uniformly from the codon identities in a coding sequence, rather than being drawn in
proportion to the elongation times of codon identities. We are unable to find any region
of parameter space for which this mechanism produces behavior that qualitatively hints
at the changes in active site occupancies and appearance of downstream peaks present in
real data.

In the second potential mechanism, at the instant of CHX arrival, the means of the
exponential distributions from which the elongation waiting time of ribosomes at each
codon identity are changed. Every ribosome with a pending elongation event in the
priority queue has this event discarded and redrawn from the new distributions. After
this shift in codon-identity-specific elongation rates, a user-specified interval of time is
allowed to proceed before the locations of all ribosomes are measured. As discussed
in the main text, a potential mechanistic basis for this behavior is that CHX molecules
repeatedly bind and unbind from each ribosome, so that the mean time a ribosome spends
at a position reflects the influence of the codons located in the ribosome’s tRNA binding
sites on the rates of CHX association and dissociation.

For either model of CHX action, a template (real) experiment is used to guide the
number of simulated reads produced for each gene in order to accurately reflect the
dynamic range of expression in the yeast transcriptome. To do this, for each gene,
copies of the coding sequence are evolved to steady state and put through simulated
CHX treatment before recording simulated read positions until the total number of reads
produced for the gene just exceeds the count of reads mapped to that gene in the template
experiment.

Modelling transient behavior after changes in relative elongation
rates

To analytically model transient patterns in ribosome density following sudden changes
in codon-specific relative elongation rates, we assume for simplicity that the amount of
time a ribosome spends at a particular position depends only on the identity of the codon
positioned at the A-site of the ribosome and that these time intervals are independent and
exponentially distributed with a codon-identity specific rate parameter. We also assume
that rates of initiation are small enough relative to elongation rates that collisions between
ribosomes can be ignored.

Each coding sequence is an ordered sequence of the 61 non-stop codons. Suppose that
a particular coding sequence g consists of n codons with identities {ci} for i = 1, . . . , n.
Then the life cycle of a ribosome with respect to this coding sequence can be modelled as a
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simple continuous-time Markov chain with a dummy state 0 that represents the ribosome
doing anything but translating this particular coding sequence. Transition from this
state into the act of translating the first codon occurs at some coding-sequence specific
initiation rate λinit that is a nuisance parameter for the purposes of this calculation. After
this, the ribosome transitions from each codon to the next at a rate determined by the
identity of the codon it is currently translating. Assuming that the cell is in a steady
state condition, the probability that a random point in time sampled from the lifetime
of a ribosome will find it in the act of translating a particular codon, given that it was
observed somewhere on this coding sequence, is given by the stationary distribution of
this Markov chain, conditional on not being in state 0.

The infinitesimal generator matrix of this Markov chain is

Λ =


−λinit λinit 0 0 . . . 0

0 −λc1 λc1 0 . . . 0
0 0 −λc2 λc2 . . . 0
...

...
...

...
. . .

...
λcn 0 0 0 . . . −λcn

 . (5)

Because this Markov chain is irreducible, it has a unique stationary distribution

psteady state =
[
p0 p1 . . . pn

]
. (6)

The stationary distribution will satisfy the probability mass-balance equation

psteady stateΛ = 0T (7)

and the normalization condition

n∑
j=0

pj = 1. (8)

It is straightforward to verify that

p0 =
1
λ0∑

k∈{0,c1,...,cn}
1
λk

(9)

and

pj =

1
λcj∑

k∈{0,c1,...,cn}
1
λk

(10)

for j = 1, . . . , n satisfy these equations. To produce the conditional stationary distribu-
tion given that not being in the dummy state, simply divide the other components by
their sum. The net effect of this is to remove the term corresponding to the dummy state
from the denominator, giving

pj =

1
λcj∑n
k=1

1
λck

. (11)
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If the probability distribution over states at t = 0 is given by p(0), then it is a standard
result that the system of ordinary differential equations governing the flow of probability
density between states over time has solution

p(t) = p(0)etΛ. (12)

Consider a coding sequence consisting of 100 copies of codon A, followed by a single
copy of codon B, followed by 100 copies of codon A. Suppose that the two codon identities
are translated with mean relative elongation times βA and βB,before. Let Λbefore be the
infinitesimal generator matrix of the Markov chain with these rates, and let pbefore be
the steady state distribution under Λbefore. Suppose that the system is at steady state
and then at time 0 the dynamics of translation are instantaneously changed so that the
relative elongation rates of the two codon identities become βA and βB,after. Let Λafter

and pafter be the generator matrix and steady state distribution, respectively, under these
new relative elongation rates. Then

p(t) = pbeforee
tΛafter . (13)

To understand the transient behavior as the system relaxes to the new steady state,
decompose pbefore into

pbefore = pafter + (pbefore − pafter), (14)

giving

p(t) = paftere
tΛafter + (pbefore − pafter)e

tΛafter . (15)

By construction, pafter is in the left null space of Λ and is therefore a left eigenvector
of etΛafter with eigenvalue 1 for any t, so this becomes

p(t)− pafter = (pbefore − pafter)e
tΛafter . (16)

The left side of this equation represents how much the distribution at time t still
differs from the eventual steady state. Except for slight differences in normalization,
pbefore − pafter is essentially an impulse at the location of the single occurrence of codon
B, scaled by λB,before − λB,after. For a particular offset downstream of the occurrence
of codon B and a particular value of t, therefore, the linearity of the expression on the
right hand side implies that the transient change in magnitude of the downstream wave
is proportional to λB,before − λB,after.

Figures 4 and S8 plot evaluations of this solution at a range of positions around
codon B for series of increasing time points for the cases where codon B changes from
being slower than codon A to being faster than codon A at t = 0 (that is, βB,after <
βA < βB,before) and where codon B is slightly slower than codon A before t = 0 but then
becomes even slower (that is, βA < βB,before < βB,after), respectively. In a window around
codon B of length l on either side of codon B, the instantaneous rate of change in net
ribosome density in the entire window is equal to the rate of flow into the leftmost codon
position in the window minus the rate of flow out of the rightmost codon position. Until
the downstream wave reaches this rightmost position (or any wave of global change in
density caused by a relative change in elongation rates compared to the rate of initiation
reaches the leftmost position), these two terms remain equal to each other. This implies
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that the net density across the window remains unchanged, so the net excess or deficit
in the downstream wave must be equal in magnitude but opposite in sign to the change
at codon B.

This ‘conservation of ribosome density’ argument motivates the expectation in Figures
5, S9, and S10 that the downstream wave areas for each codon identity should exactly
offset tRNA binding site changes, and the closely related argument that aggregate tRNA
binding site enrichments before a CHX-induced change in dynamics can be recovered by
adding downstream wave areas back to the binding site enrichments in the presence of
CHX. Applying this correction recovers the positive correlations with 1 / tAI expected if
codons decoded by less abundant or wobble base-paired tRNAs are on the whole trans-
lated slower than average, although a somewhat wide range of positive correlation values
are observed across different experiments in Figure 7. While this could represent gen-
uine differences in translation dynamics between the experiments, it seems likely that
technical biases could account for much of the variation. When downstream waves have
only moved a few codons downstream (as in our experiment), enrichments are affected by
biases in how efficiently footprints with different nucleotides at the 5’ edge are converted
into sequenceable DNA [2]. When waves have moved far enough downstream that large
ranges of offsets need to be summed to capture all of their area, patterns in codon usage
could lead to small biases in enrichments around different codon identities that aggregate
when large ranges of offsets are summed.
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