Supplementary Materials

Disparate mutations confer therapeutic gain of Hsp104 function

Meredith E. Jackrel¹, Keolamau Yee¹, Amber Tariq¹, Annie I. Chen^{1,2}, and James Shorter^{1,2}*

¹Department of Biochemistry and Biophysics, ²Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, U.S.A.

*Correspondence: <u>jshorter@mail.med.upenn.edu</u>

Running title: Diversity of enhanced Hsp104 variants

Keywords: Hsp104 / ALS / protein misfolding / amyloid / protein engineering

Supplementary Figure 1. Hsp110 is not required for Hsp104-mediated suppression of TDP-43 toxicity. BY4741 WT, $\triangle sse1$, and $\triangle sse2$ yeast strains were transformed with 413GAL TDP-43 and the indicated Hsp104 missense mutants or control. Strains were serially diluted fivefold and spotted on glucose (off) or galactose (on) media.

Supplementary Figure 2. Deletion of MD motif 2, helix 3, or helix 4 potentiates Hsp104. W303Δ*hsp104* yeast integrated with pAG303GAL-FUS (left) or pAG303GAL-α-syn + pAG304GAL-α-syn (right) was transformed with the indicated 416GAL-Hsp104 deletion construct, empty plasmid, Hsp104^{WT}, or Hsp104^{A503V}. Strains were serially diluted fivefold and spotted on glucose (off) or galactose (on) media.

Supplementary Table 1. Potentiating Hsp104 mutations.
The mutations that potentiate Hsp104 activity, their location, and their identification are listed.

Potentiating Mutations	Middle domain helix	Source
V426L/G	1	Jackrel et al., 2014
A437W	Distal loop	Jackrel et al., 2014
K451E	2	This paper
R465G	2	This paper
Y466S	2	This paper
E469D	2	This paper
K470Q	2	This paper
E474V	2	This paper
K480E	2	This paper
L483S	2	This paper
A493T	2	This paper
D498V	3	Jackrel et al., 2014
A503X*	3	Jackrel et al., 2014
D504V	3	Jackrel et al., 2014
Y507A/C/D/V	3	Jackrel et al., 2014
P511A	4	This paper
I513F	4	This paper
G532S	4	This paper
M536K	4	This paper
N539L/E/D/G/K	Small domain NBD1	Jackrel et al., 2014
A430V-K514E	Distal loop and 4	This paper
A430V-N534I	Distal loop and 4	This paper
A430V-K514E-N534I	Distal loop and 4	This paper

^{*}X = any amino acid except A or P

Supplementary Table 2, Mutations in the Hsp104 MD that do not potentiate activity. The MD mutations do not that potentiate Hsp104 activity, their location, and their identification are listed.

Non-potentiating Mutations	Middle domain helix	Source
Q425R	1	This paper
E427K	1	This paper
A430V	Distal loop	This paper
E432D	Distal loop	This paper
S439T	Distal loop	This paper
L447I	2	This paper
L455S	2	This paper
E457K	2	This paper
L459S	2	This paper
R463K	2	This paper
K470R	2	This paper
K481R	2	This paper
D484G	2	This paper
N488I	2	This paper
T499V	3	Jackrel et al., 2014
A500V	3	Jackrel et al., 2014
T501V	3	Jackrel et al., 2014
A502V	3	Jackrel et al., 2014
L505V	3	Jackrel et al., 2014
R506V	3	Jackrel et al., 2014
K514E	4	This paper
Q523R	4	This paper
E528G	4	This paper
A531V	4	This paper
N534I	4	This paper

Fig. S1. Jackrel et al.

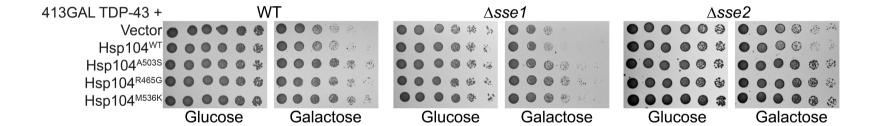
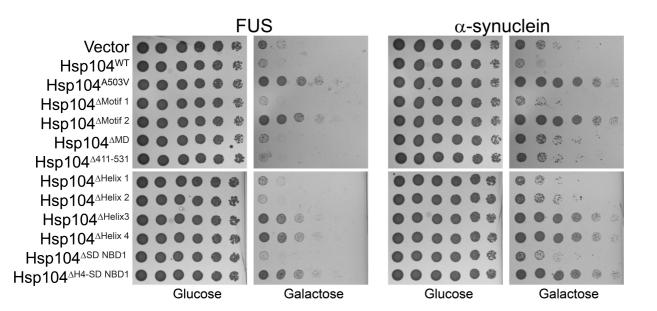



Fig. S2. Jackrel et al.

