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Additional file 1
Effect of neurite location (axon/dendrite) on traveling speed of intracellular vesicles: a

worked example

To clarify the procedure of a multilevel analysis, we use a hypothetical example in

which measurements of velocity of intracellular vesicles are nested within neurons

(Neuron ID). In this example, we investigate whether velocity differs between ax-

onal and dendritic measurements (Location). Collected from 20 neurons, there are

on average 100 measurements per neuron (44 to 58 axonal measurements [Location

= 0], and 43 to 56 dendritic measurements [Location = 1]), resulting in a total of

2000 measurements on velocity.

The outcome variable velocity is standardized (ZV elocity; i.e., the variable is trans-

formed such that it has a mean of 0 and a standard deviation of 1). Standardized

variables are easily obtained in e.g. SPSS (Analyze → Descriptive Statistics

→ Descriptives: select the variables you want to standardize and tick the box

”Save standardized values as variables”). Location is dummy coded 0 (axonal) and

1 (dendritic). The advantage of using data in which the outcome variable is stan-

dardized and the dummy indicator is coded as 0 and 1, is that the amount of

neuron-related variation in the experimental effect σ2
u1 can be interpreted accord-

ing to the guidelines of Raudenbush and Liu [1]. Using these conventions, values of

σ2
u1 equaling 0.05, 0.10, and 0.15 are considered small, medium, and large, respec-

tively. An added advantage of using standardized data is that the intercept variance

σ2
u0 approximates the ICC, and an added advantage of using the dummy coding 0

and 1 is that the intercept variance σ2
u0 equals the cluster-related variation in the

mean value of axonal measures (i.e., the condition coded as 0).

We illustrate multilevel analysis using the statistical package SPSS, and syntax

is provided for each step. To illustrate how the same analyses can be run in R,

corresponding R code is provided at the end of the document.

Assumptions

One of the assumptions of standard multilevel analysis is that the outcome vari-

able is normally distributed. A visual inspection of the distribution of ZV elocity

for the axonal and dendritic measurements separately shows that ZV elocity can be

considered normally distributed. When data are non-normal, transformations can

be considered, or a multilevel model for non-normal data can be used (i.e., SPSS

also allows for multilevel analysis of dichotomous and Poisson distributed outcome

variables). When the results of multilevel analysis of the transformed and untrans-

formed data are similar, interpreting the results of the untransformed data can be

easier, and is therefore recommended. Another assumption concerns the absence of

outliers, i.e., standardized values below -3.33 and above 3.33 (assuming standard

normally distributed data) need to be excluded from the analysis.

Analysis

Multilevel analysis is conducted in a stepwise manner, building up the model from

simple to more complex. Before conducting the actual multilevel analysis, we will

first visually examine the variance between and within neurons of the measured

velocities to get an idea of the degree of relative similarity between observations
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Table S1 Syntax and selected output for visualization of vesicle velocity over neurons

GRAPH
/SCATTERPLOT(BIVAR)=Neuron ID WITH ZVelocity BY Location
/MISSING=LISTWISE.

obtained from the same neuron, and how much the difference between axonal and

dendritic measurements varies over neurons. We plot the measured velocities for

each neuron separately and color code the distinct measurements from the axon and

dendrites: syntax and output are shown in Table S1. The figure shows that there

is considerable variation in both axonal and dendritic measurements, both within

and between neurons. In addition, the difference in velocity between axonal and

dendritic measurements varies over neurons: in some neurons the measured velocity

of axonal and dendritic vesicles completely overlap, and in others they do not. In

general, however, the velocity seems slightly lower for dendritic measurements, but

we of course need to test this.

Intercept only model In order to perform the analysis, one additional variable has

to be created: an artificial intercept (int), which is a variable that always has value 1.

Next, an estimate of the intracluster correlation (ICC) can be obtained by running

an intercept only model (see equation 1 in Box 1), i.e., a model in which every

neuron is allowed to have its own mean velocity, but that does not include Location

as experimental variable: syntax and selected output are presented in Table S2.

In the intercept only model, the intercept represents the overall mean value for

velocity, i.e., velocity calculated across all cells and across both axonal and dendritic

measures. As we standardized the variable velocity, the overall mean is zero. In the

Table ”Estimates of covariance parameters” we see that the variation in the mean

velocity over neurons equals .505 (i.e., the intercept has a variance of .505, suggesting

that the mean velocity shows variation between neurons). To obtain an estimate

of the intracluster correlation (ICC; a standardized measure of the variation of the
2
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Table S2 Syntax and selected output for intercept-only model through SPSS MIXED

COMPUTE int = 1
EXECUTE.

MIXED
ZVelocity with int
/fixed int | noint
/random int | subject(Neuron ID) covtype(un)
/METHOD = ML
/print solution testcov r.

mean value over neurons), apply equation 3 in the main text:

ICC =
σ2
u0

σ2
u0 + σ2

e

=
0.505

0.505 + 0.494
= 0.506. (1)

This means that when only considering the mean ZV elocity of each neuron (i.e.,

not distinguishing between Location), 50.6% of the variability in ZV elocity is due

to differences between neurons, i.e., can be explained by neuron-membership. Note

that because the outcome variable vesicle velocity is standardized in our model, the

variance estimate of the intercept (.505411) can simply be interpreted as the ICC

because the total variance adds up to 1 (the slight deviation in the fourth decimal

is due to the fact that ZV elocity is not perfectly normally distributed).

Note that the residual variance (denoted as σ2
e in the equation to obtain the ICC

and estimated at 0.494) represents the variation observed within each neuron, i.e.,

the variability in velocity measures taken from the same neuron.

The statistical significance of the variation in the intercept can also be assed. How-

ever, the Wald test reported in the table is not appropriate to test significance

of variances (i.e., the asymptotic Wald test assumes normally distributed variance

components, which is unrealistic [2]). Whether the variance component is signifi-

cantly different from 0 can, however, be tested using a chi-square (χ2) test. If we

square the Wald Z statistic in the table, we get approximately a chi-square value,

with the number of degrees of freedom being 1 (i.e., we test only 1 parameter,
3



Supplemental to: Multilevel analysis quantifies variation in the experimental effect while

optimizing power and preventing false positives, E. Aarts et al.

Table S3 Syntax and selected output for model including fixed effect of Location through SPSS
MIXED

MIXED
ZVelocity with int Location
/fixed int Location | noint
/random int | subject(Neuron ID) covtype(un)
/METHOD = ML
/print solution testcov r.

namely the variance of the intercept)[1] . So we get:

χ2(1) = (3.132)2 = 9.809. (2)

Since a variance component cannot be negative and this parameter is thus subject

to boundary constraints (see e.g. [3–5]), the accompanying p-value, which equals

.002, needs to be divided by 2: p = .001. Assuming α = .05, this test is significant,

i.e., the variation of the intercept over neurons is significantly different from 0.

Note that in research design B, not accommodating the variation in the intercept

results in a decreased power to detect the overall experimental effect (which is dif-

ferent to research design A, where not accommodating the variation in the intercept

results in an inflated false positive rate).

Model including fixed effect of Location on vesicle velocity After we estimated the

intercept only model and the ICC, we add Location to our model to identify its

effect on vesicle velocity, i.e., is the velocity of vesicles different in axons compared

to dendrites. We first add Location only as a fixed variable to the model, and then

extend the model to include the possible variation in the difference between axonal

and dendritic measurements over neurons. The syntax and selected output for the

model only including the fixed effect of location is presented in Table S3.

We see that the overall effect of location equals -0.564. However, we cannot draw

any conclusions on the significance of this effect, as we did not accommodate the

[1]Note that SPSS prints -2 Log Likelihood information in the table with information criteria.
Usually, this -2LL information is used to calculate the chi-square test. However, SPSS sometimes
uses pseudo maximum likelihood estimation, and then the -2LL values of different models cannot
be used to compute a chi-square value.
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possible variance of the effect of location over neurons. Note that adding the ex-

perimental variable Location results in a decreased residual error (i.e., from .494

to .414), i.e., ZLocation partly explains why the observations within neurons vary.

Also note that the variation between neurons (i.e., the intercept variance of 0.506)

remains almost the same (up to the third decimal place) compared to the model

that does not include ZLocation. However, the interpretation of the variation in the

intercept is now changed to neuron-related variation in the mean velocity of axonal

measurements specifically (while it was interpreted as neuron-related variation in

mean velocity in general (i.e., both axonal and dendritic measures) before Location

was included as predictor in the model).

Model including both the fixed and random effect of Location on vesicle velocity

The syntax and selected output for the model including variance in the effect of

Location is presented in Table S4. Note that we save some variables in the last

line of the syntax, these are used later to plot the results. Also note that we set

covtype to DIAG, i.e., the variance-covariance matrix between the parameter esti-

mates is diagonal, meaning that we assume that the intercept and Location effect

parameters have variances (on the diagonal) but that they do not correlate (i.e., the

covariance, which is noted on the off-diagonal elements, is 0, i..e, the neuron-specific

mean axonal velocity is not related to the neuron-specific effect of ZLocation on

vesicle velocity).

The overall effect of Location on vesicle velocity is approximately the same

as in the previous analysis: -0.565, and is highly significant with p < .001. The

effect size d of Location is obtained through γ10/σ
2
e [6], which corresponds to

−0.565/0.387 = −1.460. By convention, effect sizes of 0.20, 0.50 and 0.80 are consid-

ered small, medium, and large, respectively [7]. As such, the overall effect of location

Table S4 Syntax and selected output for model including fixed and random effect of Location
through SPSS MIXED

MIXED
ZVelocity with int Location
/fixed int Location | noint
/random int Location | subject(Neuron ID) covtype(un)
/METHOD = ML
/print solution testcov r
/SAVE = FIXPRED SEFIXP PRED SEPRED RESID.
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corresponds to a (very) large effect. The 95% confidence interval (CI) assuming a

normal distribution is obtained through γ10 ± Z1−α ∗ SEγ10 , which corresponds to

-0.565 ± 0.079 * 1.96 = [-0.720, -0.410] (the deviation with the SPSS output is

because SPSS uses the t distribution with 20.05 degrees of freedom to obtain the

95% CI).

The effect of Location on vesicle velocity, however, varies over neruons with

a medium sized variation: the neuron-related variance of the experimental effect

equals 0.110. To interpret the variation in the effect of Location over neurons, con-

sider the following. The variance of 0.110 corresponds to a standard deviation of

Table S5 Syntax and selected output for intercept-only model through SPSS MIXED

GGRAPH
/GRAPHDATASET NAME="graphdataset"

VARIABLES= Location PRED 1 Neuron ID
MISSING=LISTWISE REPORTMISSING=NO
/GRAPHSPEC SOURCE=INLINE.

BEGIN GPL
SOURCE: s=userSource(id("graphdataset"))
DATA: Location =col(source(s), name("Location"))
DATA: PRED 1=col(source(s), name("PRED 1"))
DATA: Neuron ID =col(source(s), name("Neuron ID"), unit.category())
GUIDE: axis(dim(1), label("Location"))
GUIDE: axis(dim(2), label("Predicted Values"))
GUIDE: legend(aesthetic(aesthetic.color.interior), label("Neuron ID"))
SCALE: cat(aesthetic(aesthetic.color.interior), include("0", "1", "2", "3",

"4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17",
"18", "19"))
ELEMENT: line(position(Location*PRED 1), color.interior(Neuron ID),

missing.wings())
END GPL.
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0.332. Assuming normality of the cluster specific deviations from the overall effect,

β1j , about 95% of the neuron-individual Location effects would be between -0.565 -

1.96 * 0.332 = -1.216 and -0.565 + 1.96 * 0.332 = 0.086; virtually all comparisons

between velocity of axonal and dendritic vesicles show a negative effect of location,

i.e., lower velocity in dendritic vesicles. The percentage of effects showing a positive

effect of Location (again assuming normality) is about 4%. We can also plot the

neuron-specific effects of Location on vesicle velocity, syntax and selected output is

presented in Table S5. This plot clearly shows that the velocity is usually lower in

dendrites than in axons, but that the extent to which it is lower is not the same for

every neuron.

As simulations presented in Fig. 4 in the main text showed that the Type I er-

ror rate can already be much increased when the cluster-related variation in the

experimental effect equals 0.025, multilevel analysis is certainly advised when the

neuron-related variation in the experimental effect equals 0.11.

To test if the variation in the experimental effect over neurons is statistically signif-

icant, we again use the chi-square (χ2) test appropriate for variance components,

resulting in:

χ2(1) = (2.772)2 = 7.684. (3)

Dividing the accompanying p-value by 2 results in p = .003. Assuming α = .05,

this test is significant, i.e., the neuron-related variation in the effect of Location

on velocity is significantly different from 0, i.e., the effect of Location on velocity

varies over neurons. Note that the neuron-related variation in the effect of Location

both partly explains why measurements within an axonal or dendritic location vary

within a neuron (i.e., the residual variance) and why the mean velocity of axonal

measurements varies over neurons (i.e., the intercept variance): both variance com-

ponents are now decreased compared to the previous model.

In summary, based on the multilevel analyses of these data one would conclude

that:

• The intercept shows variation across neurons (i.e., the mean velocity of axonal

measurements varies over neurons)

• Vesicle velocity differs between axonal and dendritic measurements, where the

velocity of dendritic vesicles is slower than those of axonal vesicles, but

• The degree of difference between axonal and dendritic vesicle velocity varies

across neurons.
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Table S6 Corresponding R code

1 # Load SPSS datafile in R
2 library(foreign)
3 data.velocity <- read.spss(file = "Velocity axon-dendrite.sav", use.value.labels

= FALSE, to.data.frame = TRUE)
4 head(data.velocity)
5
6 # Scatterplot of standardized velocity by Neuron ID, axonal and dendritc

measurements color-coded
7 attach(data.velocity)
8 plot(y = ZVelocity, x = Neuron ID, type = "n", las = 1, ylab = "Standardized

value of Velocity")
9 points(y = ZVelocity[Location == 0], x = Neuron ID[Location == 0], col =

"royalblue")
10 points(y = ZVelocity[Location == 1], x = Neuron ID[Location == 1]+.1, col =

"springgreen3")
11 legend("topleft", pch = 1, col = c("royalblue", "springgreen3"), legend =

c("axonal measurements", "dendritic measurements"), bty = "n")
12
13 # Intercept only model
14 library(lme4)
15 ML1 <- lmer(ZVelocity ∼ (1 | Neuron ID), data.velocity, REML = FALSE)
16 ML1
17
18 # Model with fixed effect for Location
19 ML2 <- lmer(ZVelocity ∼ Location + (1 | Neuron ID), data.velocity, REML = FALSE)
20 ML2
21
22 # Model with both fixed and random effect of Location
23 ML3 <- lmer(ZVelocity ∼ Location + (Location | Neuron ID), data.velocity, REML =

FALSE)
24 ML3
25
26 # Plotting Neuron specific effects of Location on vesicle velocity
27 pred.velocity <- fitted(ML3)
28 pred.velocity.aggr <- aggregate(pred.velocity, by = list(Location = Location,

Neuron ID = Neuron ID), FUN = mean)
29 col.neurons <- rainbow(20)
30 plot(y = pred.velocity.aggr$x, x = pred.velocity.aggr$Location, ylab =

"Predicted standardized velocity", xlab = "Location measured vesicle", xaxt =
"n", las = 1, type = "n", ylim = c(-1.5, 3))

31 axis(side = 1, at = c(0,1), labels = c("Axonal", "Dendritic"))
32 for(i in 1:20){
33 points(y = pred.velocity.aggr$x[pred.velocity.aggr$Neuron ID == (i-1)], x

= pred.velocity.aggr$Location[pred.velocity.aggr$Neuron ID == (i-1)], col =
col.neurons[i], type = "b", ylim = c(-1.5, 3))

34 }
35 legend("topleft", legend = paste("Neuron", 0:19), col = col.neurons, lty = 1,

bty = "n", ncol = 4)
36
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