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Calculating the optimal allocation of sample sizes and estimating statistical power to

detect the overall experimental effect

Calculating the optimal allocation of sample sizes

As shown in Fig. 5 in the main text, power increases more when extra clusters are

added, compared to the increase yielded when extra observations per cluster are

added. However, the costs of including an additional cluster (C2) are usually higher

than including an additional observation within each cluster (C1). The optimal

balance between the number of clusters (N) and observations per cluster (n) in

terms of power and costs can be determined given the cost ratio between C1 and

C2, the estimated (or expected) variation of the experimental effect over clusters,

and the total amount of available resources. First, one estimates the optimal number

of observations per cluster noptimal by:

noptimal = 2 ∗

√
C2

C1 ∗ σ2
u1

, (1)

where σ2
u1 is the standardized variance of the experimental effect over clusters. The

magnitude of σ2
u1 can be interpreted according to the guidelines of Raudenbush

and Liu [1], i.e., values of σ2
u1 equaling 0.05, 0.10, and 0.15 are considered small,

medium, and large, respectively. The standardized variance of the experimental

effect is obtained when the data has the following structure. The outcome variable

is standardized such that ∼ N (0,1) (i.e., the variable is transformed such that it

has a mean of 0 and standard deviation of 1) and the dummy indicator of the

experimental condition X is coded either as 0 and 1, or, if one wants to center

the experimental variable, as -0.5 and 0.5 (note that the cluster-related variation

in the intercept σ2
u0 is not part of equation 1. As the estimated standard error of

the overall experimental effect γ10 is not influenced by the cluster-related variation

in the intercept, σ2
u0 does not influence the optimal number of observations per

cluster).

The total costs of a study T are

T = N(C1 ∗ n+ C2). (2)

Therefore, the number of clusters N for noptimal can be obtained by

N ≤ T

noptimal ∗ C1 + C2
. (3)

To illustrate calculating the optimal allocation of sample sizes, say that we have

4,000 monetary units to spend on a study of differences between axons and den-

drites with respect to a specific characteristic of the cell. It costs 80 units to plate

a cell, and 1 unit to obtain an observation from either an axon or dendrite within

a cell. From previous studies we know that the standardized variance of the experi-

mental effect over clusters is approximately 0.10 and we set σ2
u1 = 0.10 accordingly.

When one does not poses any a priori information on the expected variation in
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the experimental effect, one can choose to calculate the optimal distribution of

resources/observations for different values of the cluster-related variation in the ex-

perimental effect, using the guidelines of Raudenbusch and Lui [1].

The resulting noptimal = 2 ∗
√

80/(1 ∗ 0.05) = 56.6; rounding down to the nearest

integer gives an optimal number of 28 dendritic observations and 28 axonal obser-

vations per cell (note that rounding down is recommended for noptimal. This leaves

more resources to spend on number of clusters: more clusters is always more ben-

eficial than more observations per cluster in terms of power). The corresponding

number of clusters N = 4,000/ (56 * 1 + 80) = 29 (note that we are rounding down

here as well, since rounding up results in surpassing the budget). In summary, given

the amount of cluster-related variation in the experimental effect, cost ratio, and

available resources, the optimal balance between power and costs is to plate 29 cells

from each of which we collect 28 dendritic observations and 28 axonal observations.

Important to note is that the optimal allocation of observations does not guarantee

sufficient power to detect the experimental effect of interest. Specifically, optimal

allocation of samples only maximizes power given the available resources and the ex-

pected variation of the experimental effect over clusters σ2
u1. Therefore, it is advised

to estimate the expected power with the obtained noptimal and N , given specific

values of the effect size d of the overall experimental effect γ10, α-level and the

variance components (i.e., residual error σ2
e and the standardized variance of the

experimental effect over clusters σ2
u1). How this is done, is explained in the next

section.

Estimating the statistical power to detect the overall experimental effect

The power for a balanced (i.e., the number of observations per condition is both

equal between conditions and over cluster) 2-level multilevel model without covari-

ates is estimated as follows. In research design B, the significance of the overall

experimental effect γ10 can be tested using an F -test. Here, F follows a noncentral

F -distribution with degrees of freedom 1 and N -1, and the noncentrality parameter

λ, F (1, N − 1;λ), where N denotes the number of clusters[1].

The estimated power can therefore be obtained as follows. First calculate the non-

centrality parameter λ. Next, use the obtained value λ and the degrees of freedom

to obtain the probability of exceeding the critical value for F in the noncentral F -

distribution (Fcrit). The noncentrality parameter λ is given by (adjusted notation

from equation 15 Raudenbusch and Liu [1]):

λ =
n ∗N ∗ γ210
n ∗ σ2

u1 + 4σ2
e

. (4)

[1]Testing significance of the overall experimental effect using the noncentral F test with 1 and
N -1 degrees of freedom is approximately similar to testing the overall experimental effect using
a t-distribution with degrees of freedom N -1-(number experimental variables) put forward by
Bryk and Raudenbush [2]. The latter is also used in the multilevel analysis package HLM [3].
Most statistical packages, however, use the Wald test [4] to assess the statistical significance of
the overall experimental effect. In the Wald test, Z is evaluated against the standard normal
distribution, where Z is obtained by Z = (overall experimental effect) / (standard error of overall
experimental effect). As the standard normal distribution does not depend on degrees of freedom,
sample size is not taken into account in evaluating the significance of the overall experimental
effect. When the number of clusters is small, the difference in the obtained significance value for
the Wald test and the noncentral F or t test becomes considerable, and using the noncentral F or
t test is conservative.
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When λ is obtained, the probability to exceed the critical value of F in the noncen-

tral F distribution Fcrit is estimated by:

Prob[F (1, N − 1;λ) > Fcrit = 1− Prob[F (1, N − 1;λ) < Fcrit. (5)

The probability of the last term in equation 5, Prob[F (1, N − 1;λ) < Fcrit , can

easily be obtained in widely used statistical packages like SAS and R, and in online

calculators. Hence, when the noncentrality parameter λ and the degrees of freedom

are known, the estimated power is relatively easily obtained.

A difficulty with obtaining λ is that the effect size and variance components are

usually not known beforehand. The solution is to assume a standardized model

such that 1) the degree of variation of the experimental effect over clusters σ2
u1 can

be chosen according to the rules of Raudenbush and Liu [1] where 0.05, 0.10 and

0.15 are considered small, medium and large measures of σ2
u1, respectively, 2) the

magnitude of the experimental effect γ10 can be chosen according to the conventions

for effect size d, where a standardized effect of 0.20, 0.50 and 0.80 are considered

small, medium and large [5], and 3) the residual error σ2
e can be set to 1. Now,

based on previous studies, one can make an educated guess and/or consider a range

of values to acquire a feeling for the obtained power for the planned research under

various, more and less advantageous, conditions.

We illustrate obtaining the estimated statistical power by continuing the previous

example. When we assume a small overall experimental effect γ10 = 0.20, filling

in the parameters of the model (noptimal = 56 observations per cell, N = 29 cells,

variance in the experimental effect σ2
u1 = 0.10 and σ2

e = 1.00) results in

λ =
56 ∗ 29 ∗ 0.202

56 ∗ 0.10 + 4 ∗ 1
. (6)

Next, using the statistical package R [6], we obtain Fcrit with the quantile density

function for the F distribution, qf():

Fcrit <- qf(1-alpha, 1, N-1),

where alpha is the chosen significance level. For α = 0.05 and N = 29, Fcrit equals

4.20. Next, the calculated values for λ and Fcrit are used to obtain the probability

of exceeding the critical value for F in the noncentral F distribution. We do this

by using the distribution function of the F distribution in R, pf():

power <- 1- pf(Fcrit, 1, N-1, lambda),

where lambda is the noncentrality parameter λ. The estimated power equals 71%.

If the number of observations vary per condition and/or vary over clusters (i.e., an

unbalanced desing), the mean cluster size may be used instead. The equations will

then give an approximation, and deviations from a balanced design generally result

in decreased power.

The program Power in Two-level designs (PinT; http://www.stats.ox.ac.uk/∼snijders/,

based on [7]]) can be used to obtain estimates for power in more complex cases (e.g.,

unbalanced designs, or designs with covariates at the observational or cluster level).
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