Co-dispersal of the blood fluke *Schistosoma japonicum* and *Homo sapiens* in the Neolithic Age

Mingbo Yin^{1#}, Hong-Xiang Zheng^{1#}, Jing Su¹, Zheng Feng², Donald P. McManus³, Xiaonong Zhou², Li Jin^{1,4}, Wei Hu^{1,2*}

¹ State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China

² National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, 200025, China

³ QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
⁴ Chinese Academy of Sciences Key Laboratory of Computational Biology,

CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200021, China

Equal contribution author

* Corresponding author: Wei Hu; e-mail: huw@fudan.edu.cn; phone: +86 (0)21 5163 0662; fax: +86 (0) 21 5163 0663

Population	Ν	π	θ	Latitude	Longitude	Infection ^a	Detailed population location
AHGC	10	0.00462	0.00419	30.67	117.45	0.14%	Anhui Province, Guichi Country, Minsheng Village
							Anhui Province, Tongling Country, Laozhou Island, Guanghui
AHTL	9	0.00403	0.00397	30.94	117.76	3.25%	Village
HBSS	10	0.0041	0.00306	30.32	112.35	<0.01%	Hubei Province, Shashi City, Maling Village
HNYY	10	0.00492	0.00673	29.34	113.07	0.02%	Hunan Province, Yueyang City, Laogang Village
HNCD	10	0.00349	0.00389	28.94	112.16	0.93%	Hunan Province, Changde City, Wuyi Village
JXDC	9	0.00475	0.00462	29.2	116.5	6.50%	Jiangxi Province, Duchang Country, Tangmei Village
JXNC	10	0.00553	0.00663	28.21	116.16	n.a.	Jiangxi Province, Nanchang City
Lake	68	0.00491	0.00939	n.a.	n.a.	n.a.	n.a.
							Sichuan Province, Xichang City, Daxing Township, Shian and
SCXC	9	0.00103	0.00107	27.5	102.2	0.14%	Jianxin Villages combined
YNEY	10	0.00042	0.00043	26.14	99.95	n.a.	Yunnan Province, Dali City, Eryuan Country
Mountain	19	0.00108	0.00132	n.a.	n.a.	n.a.	n.a.
TW	10	0	n.a.	23.85	120.92	n.a.	Taiwan
IN	10	0	n.a.	-2.2	120.1	n.a.	Indonesia
PH	10	0	n.a.	14.69	121.37	n.a.	Philippines
JP	2	0	n.a.	36.5	138.3	n.a.	Japan
ALL	119	0.00657	0.01171	n.a.	n.a.	n.a.	n.a.

Table S1. Detailed information of *S. japonicum* samples used in the analysis.

^a Infection rate in local snails

			Protein c	oding regior				
	rRNA	tRNA	all	1st	2nd	3rd	noncoding	total
Length (bp)	1748	1468	10076	3346	3384	3346	795	14087
Unvaried sites	1688	1412	9437	3189	3324	2924	672	13209
Number of varied sites	60	56	639	157	60	422	123	878
Proportion of varied sites	0.0343	0.0381	0.0634	0.0469	0.0177	0.1261	0.1547	0.0623
Sites with a single hit	51	50	528	137	55	336	90	719
Sites with two hits	7	6	95	19	4	72	27	135
Sites with three or more hits	2	0	16	1	1	14	6	24
Indels	6	4	0	0	0	0	20	30
Substitution	65	58	773	178	66	529	159	1055
Substitution per base pair	0.0372	0.0395	0.0767	0.0532	0.0195	0.1581	0.2	0.0749
Transitions	54	50	650	158	55	437	133	887
Transversions	11	8	123	20	11	92	26	168
Transition/transversion ratio	4.91	6.25	5.28	7.9	5	4.75	5.115	5.28

Table S2. Distribution of mutations in the S. japonicum mtDNA genome.

		Maximum likelihood	Bayesian (kya)		
Node	n	complete sequence	protein coding	3rd position of codon	complete sequence
A'B'C'D	119	75.43 ± 9.58	75.11 ± 12.87	89.86 ± 16.38	75.45 ± 11.9
A'B'C	109	21.76 ± 2.45	20.55 ± 3.28	22.77 ± 4.58	22.95 ± 3.77
A'B	101	21.55 ± 2.44	20.55 ± 2.88	22.77 ± 4.22	22.89 ± 3.77
С	8	15.4 ± 2.08	13.95 ± 2.45	15.39 ± 3.39	14.87 ± 2.61
В	23	9.25 ± 1.17	7.66 ± 1.18	9.22 ± 1.78	9.56 ± 1.64
B1	12	7.01 ± 1.04	5.99 ± 1	6.94 ± 1.43	7.16 ± 1.29
B2	2	6.65 ± 1.17	5.61 ± 1.17	6.95 ± 1.69	5.95 ± 1.25
B3	4	8.73 ± 1.27	6.62 ± 1.52	7.75 ± 2.19	7.96 ± 1.6
B4	4	1.87 ± 2.29	0.99 ± 2.37	0.54 ± 5.59	1.97 ± 0.76
А	77	13.37 ± 1.7	12.27 ± 1.83	12.81 ± 3.12	13.82 ± 2.31
A2	3	5.48 ± 1.54	5.11 ± 1.62	3.33 ± 2.17	5.53 ± 1.33
A1	73	10.68 ± 1.21	10.13 ± 1.38	11.14 ± 2.12	10.94 ± 1.78
Ala	48	7.05 ± 1.15	6.5 ± 1.36	7.14 ± 2.42	7.83 ± 1.38
Ala2	29	5.82 ± 1.12	5.24 ± 1.42	6.15 ± 2.42	6.35 ± 1.16
Ala2a	24	3.41 ± 1.33	2.89 ± 2.26	3.19 ± 3.5	3.84 ± 0.83
Alal	19	5.42 ± 1.03	4.84 ± 1.16	5.3 ± 2.75	5.97 ± 1.11
Alalb	10	2.41 ± 0.96	1.58 ± 0.94	1.69 ± 1.41	3.05 ± 0.79
Alala	9	4.21 ± 0.98	4.33 ± 1.09	4.55 ± 2.81	4.75 ± 0.94

Table S3. Age estimates for important haplogroups in *S. japonicum*.

	Maxin	mum likelihood (×10 ⁻⁸	Bayesian (×10 ⁻⁸ /site/year)		
	complete sequence	protein coding	3rd position of codon	complete sequence	
rRNA	6.67 ± 1.13	-	-	7.17 ± 1.48	
tRNA	8.52 ± 1.33	-	-	7.92 ± 1.59	
non-coding	42.10 ± 5.87	-	-	40.59 ± 7.54	
1st codon	10.39 ± 1.23	11.20 ± 1.54	-	10.84 ± 1.81	
2nd codon	4.17 ± 0.60	4.30 ± 0.69	-	3.89± 0.72	
3rd codon	33.33 ± 3.62	35.70 ± 4.79	30.70 ± 5.04	30.95 ± 4.85	

Table S4. Mutation rates estimated based on ML and Bayesian methods.

tRNA were relatively conservative. In the protein coding region, the third position showed the highest rate as was evident for the non-coding region, while the second position evolved slowest due to its high effect on amino acid change.

Table S5	Population	growth rates	calculated	from Ba	ayesian	Skyline Plots.	

Datasets	Era	Growth began (kya)	95% CI for start of growth	Population growth rate (%)	Fastest growth time (kya)	Maximum growth rate by interval (%)	Peak interval (kya)	Peak growth rate (%)
	Neolithic Time	5.8	4.6-7.0	0.01	2.2-4.4	0.02	3.4	0.024
	Upper							
S. japonicum	Paleolithic Time	11.4	10.4-12.8	0.005	8.2-10.2	0.015	9.2	0.016
	Neolithic Time	5.6	4.6-7.0	0.005	3.4-5.2	0.027	4.6	0.033
	Upper							
Human	Paleolithic Time	14	12.2-16.6	0.002	8.4-12.2	0.027	10.8	0.038

Figure S1. MtDNA coverage distribution of the 119 *S. japonicum* samples used in the analysis. Note: Average coverage (black line) with 5% and 95% quantile coverage (dashed lines) for each mtDNA genome assembled in the study.

Figure S2. Variation distribution across the mtDNA genome of S. japonicum.

Note: The diversity and substitution were counted and calculated every sliding window of 200 bp (step size = 50 bp) along the entire mtDNA genome.

Figure S3. Detailed phylogenetic tree based on the mtDNA sequences of 119 *S. japonicum* samples. Every mutation is denoted to each haplogroup. Insertions are represented as '.'. Deletions were added as 'd' at the end. Blue denotes non-coding mutations. Red indicates synonymous mutations while Black means nonsynonymous mutations. Green indicates tRNA and rRNA variants. Refer to Table S1 for the abbreviations of each sample. (See supporting file 1)

Figure S4. Time estimates of *S. japonicum* haplogroups.

Figure S5 Phylogenetic tree of 120 complete *Schistosoma japonicum* mt genomes, based on Mrbayes. The red ID indicates the sequences from Attwood *et al* (2015). For the abbreviations of each sample, refer to table S1.

0.002

Supporting information:

>ref

CTGGTAATCTTGTAAGAGGGTTGTGTTTCGGCCACAATTATGTAGAGTTTATTGTTTCTACTACCAGTGTTTTT TTTAGTTATTTTATGTTGATGATTTGTACTTATATATCTGTTATGTATAGTTTTCATTATTTTCGTTAAGGAATG TCTCTTGGTTACTTTCTTATATAATGGTTAGTTTTTCTTTGGTTATGATTATTTTAGTAATGACTAATAGTTTTTTA GTTAGGTTAATAATGTGAGAGTATCTTGGTTTGATTAGTTATATTCTTATATGTTTTTATGATAATAGTTCTTCTTT TATTGGTGGTTGTGCTTATGTAAGTTTGTTAGGGTTAGTAGTCTTTGTGATTGTGTCTACTAAGAGTGCTTTGT TTCCTTTTATTTCTTGATTGTTAGAAGCTATGCGTGCTCCTACTCCAGTAAGTTCTTTAGTTCATTCGTCAACTT AGTTAGTTGCTTTGTCTACTAGTAAAAATATTTCTTGGGTTTTTTTAATTTTGTCTATAGGTGATTATGTATTGG TGTTGTTGGTTGGTTTATCTGGTTTTCCATTTATGGGTTTATATTTTAGAAAGCATGTTTTTTAGATAGGTATA TCGATTGTTTATATTGTTTGGCTATTTGTCGTTTAGTGTGTATTCACTTCGTGTAGATTTTAATATG ATAGGT TTAGTTGTTATGATTAGTTCAATAGTTGGTAAATATATGTGCTTTTTAATTTATAGGCCATATAGATTTTTTAGTT TATATGAAATTATTTATTTTATGTTTGTTTGTTTGAGAAATATATGTTTGAGTTTCTAAATGATTGTGTTTCTT TAGTAAATTATTTTAAGATTAGTAGTGGTTTTAATTTGTGGTAATATAACGAGTGTTATAAGTTTTATTATTCTTT GTTGTTGTTTTCATATTACCTTGTATATTTTTTTTTCATCCTTTTATTTTGGTGTTAATATTGTGTTTATGATTTTA TTTGTTCAATCGTTATGTTAGATGGGAGTTTGTAAATATAACTACAGATCGTATAGTTGGATTTTGATTGTTTTT GCTGTTTTAGAGGTTATAAGGAGTGGTGTTAGTAGATTATTTAATCCGCATGCTGCGGCTTGTTATATGACTAT AGGTTTGCATTTTATACACGTTGTAATAGGTACTGTAGGATTGACTCAATTGGATTATTTTAGATTTGATGT TGTGTATTTGTTAGTTTAGTTAGTTGGTTACGGTTAGCCAGGTGTGATGTGCATATAGATTTTCGTTTCTGT GGAGTTAGATTGTTTTTAACGGTTAGCATAAGTTTAGTTTTATGTAGGTTAAAATAAACCGTTAGTTTGTGGTA CTAAAGATTTTATGTTTTGAACTAAAATATTGGATGTTGAAAGTCATTCGTCTTAATTTGGTTGATTTGCCTACT AGGTTGTCTCTTAAATATTTTTGGTGTGTGTGGTTTTGTGTTGAGTATTTTTATGGTTATTCAAGTAGTTTCTGG AATAATTTTGTCATTATTTTATGATGTTTTAGGTAAATTTTCTTTATTAATGATGTGGACTGATGATAGAATTTGA GGTTGTATTATGGGAGGTATCGTTTGCTTGGCGTTTGAAAAGTTGGGTTTTTGATTATATTCTTGTGATGATT GAGGCTTTTTTAGGTTATGTTTTACCATGACATCAAAATGTCTTATTGAGCTGCTACTGTATTGACTTCTATAGTT

ATTAGATGTTGAAGCTTTTGTTGTTGCCAATCCTTTGGTGACTCCAGAATCTATAAAGCCTGAGTGATATTTTT TGCTGTTTTATGCTATGCTACGAAGAGTAGACTCAAAGATAGGTGGTTTAATATTAGTAATTTCATTTTTGGTT AGTTTATTTTTATGCTTAGTTATTTTTGGTGGTTGTCATGCGGAGTATCCTTATATTTATGTGAGTAAGGTTATA AGGTTTTTTATGTTAGTTTATTAGTTACTTATAAGGTGTTGTGGATTATTCCATTGGGTGTCGATAGTGATTAC GTAATTTATCAAGTTTGATAGATAGATTATATCTATGTTTTTTTAATTTTAAATAATGTTATTTGTCATTTTATTACT TGGAGGTGGTTTGATGTTAATTAGACTGGTAATATGTAGTCACTATTTGTTTAAATATTTAATAGTTCTTGAGA GGCTTTGTTTGTTTAGAGGCTTCAATAATGTTAATGTTGTTGGTATAAGAATATGTCACGGTTCACTTCGTG TTTCAGGAGGTTTATAACTGGATTTGTAGTCACTTTTATATTTTTACTTATCTTATTCTAGTATATGGGTTTCA TAATGATTTTTTTAACTTCTATAATATGACTTGTATTGTGGTTAGTTGGTTCTAAGGATATAGTTTTATTATTAGT GTTTTTAGTGCTATGATTACATATGTTGTATCTAAATCTTTAGTATTTTGGTTTTTCTATGAGCTTTCAATTATTAG GGCTTTATATATGTTAATTGTTGGTAGTCCTTATCCAGAACGTTATATTTCTAGGTGATATTTTGGTGGGTATATA CTATTAAGTAGTGTTCCGTTGCTATTGGGTATTTGTTTTATTGGTTTGAATAGTGGTAGGTTTAAAGTGATTTT GTGAGATAAGGGGGGATATGTGTGATTCTTATGGTGCTTTTTTGCTCATTATAGTAATGTTTTTGACTAAGATTC CTGTTTTTCCATTTCATGGTTGATTACCACTAGTTCATGCTGAAGCTAGGAGTCCTGTCAGTATAATATTAAGT TTTCTACTTTTTATTATGCTATAGAGTAGTTTATTTAGTTGCAGCTGTGTTTGAATGTGATTCTAAGCGTTGAT TGCTTTCATATATTGTTTAGGTCACGGATTATCTGTTGCTTTATGGTTATGGTTATGATTTGGTTATGAGATT AGTGGTTCTCGTAAATGGGGTATACTTGTCAAGATATTTGGTGGTGGTGGTTTAATTATGCATTTTATTATGGGGTT TGTGTTTTTAAAAGTTTGTGGGTTTCCACCAGCCTTGCAGTTTTTTGGTGAGTTATGATTGGTTATAAAATATA TTACGTTGGGTGATATAATATCATTATTATTAGTATCTATTTACATATTTAGCGGTAGAATAATAGGTTTTATTATT TATGGTTTAGTAATATGTTCTCCTATTAATACAAGATATGAGTATAGTGGTGGATTGGATAAATTTTTGTTTTGTA AATTATTAGGTTTGTGAATTAAAGCCAAAATTTTTGATTTTAGTTGCGATTATTCCTTTTAGCTTAATATTGAGA GTTCATGTATTGTGCGGTAATGCACATATCCTTATGTTATCTGGGTTATGGTTTACTAGATTTTTGGTTAAGCTG TCTAGTTATTTAAAGGTGATGAAGATTGAAATGTGGTATAGCTTATCTTTGTTTATACTGATTTTTGTATTTGCC ATAGTTCGTTTTCCATATGTTTACGGGATGTTTGATTATGGGTTATGTTTAATAGTGTTAATTATGCCATTGTTTA ATATACTTAGCACCGTTTGTTTGTATAATAGAGTTAATCAGGTTTGTTATACGTCCAGTCGTTTTATTGGTCCGT TTTTTGTAATTTTTTGTGCTGTTTGTTTATGAGATTTTTGTTGCATTAATGCATTGATTTATAGTACAAGAGAT ACTTAAGTTTTCTGTCGATCATTAATTTAAGTTTAGACATATGCTTTATTCATTTTTGGCTATTACTATTTTGTTG TCATTATGTGTAACTCTGGTATTTTCAGGTGACTTATTGACTTTTTGATTATTAGAGTTATGTAGGATAGTA GTTATTCCATGTTTTTATTGGAATGATAATATTAGAGCCTTGAGTCAGGTTGATGGTCTGCTTTATTATTTACTT TTTTTTTAAAGTTCGGTGTGTTCCCTTTTATTTTTGGGTTTATCAGGTTTTTACATCAAGTAAGAGTTGAATA ATTTGTTGATGTATTTCTACTGTTTTAAAGTTTCCTGTTTTATATATTAGTTTTTTTGTGGGTCAATTTAATATAT

GTTGGCTATTATTCTGTCTAGATTGGGTATATTAATTTCCGGTGTGTTGATTTGGGTTAATAGTATTAATTGGTT AGTGGTTAGTAGTAGTACTGTACCAAAGAGTACTTGATGAGGACGTGGGAAGATCTTGTTTTAGTTTTAAC ATTGATTACGTGCTTAGTTTATTTTAGAATTGGAGTTTGTCAGGCTTTAGGAATCTCTTTTGGATAGTGCGTTA GTGGGGGTTTGTATAAAGTTTATGATGTTGTACATTTTAATTTTGTCTACTTTTACTGGTTATGGTTTGTTGA TGTTAGGTTGAGGTTCTTGGAAAAAGTATAGATTGATTAGTGCTGTTCGTGTGGCTTTTGCTAGAATAAGGTT TGAAGCTACTTTTATGTGTTTAGTATTAGTATTGGGTGTAATATAATGATTATGGTAAATTGGATATTACTTATT ATTATGGTGAGTCCGAGAGTGAATTAGTTAGCGGTTTAAATACTGAGTATAGTGGTTTATCATTTATAGTGATA TTTGCTTTTGAATATGTAATGATGTTTATATCAAGATGAATTACTTCAATAGTTTTTTATGGAAGTTATATTGGTT GTAGTTTATGTAGATTAATTAAGATTGTGAGGCTGTTAACCTTAAGGTGAGTGTAAATTCCATAATCGTTTAAT TTTAGATTATATATCAGTTAATATTTTATTTAGAATATAAACTTTGGGTGTTTAAGGATTTGAATTTCAAATTA GCTGATTATTACGTTACTTATATGACTTGTTGTTATATTTAGCCGAGAGGGCTGCTAAGCAGGTTACTCCGATAT AGTAAAATGTAAGAAAGACTTTTTTCCTCGGTATTTTTGTAATGTTTCATAGATATCTTAAGTATAAAGTGGAG TTTTATTTATAGTTTTAGTTGTTCGCTTTTATATGTTTTATTATTGGGGTTATAAGAATTTAGATTATAAGATTGGT CGGGGTAAATGAGTTGATTCATTTGAGTGTGGTTTTATGACTCATGGGTTTAGGGAGAATTTTTTTAGTTTTT CTTATTTAAATCTTTTGGTTTTTTTGTTATATTTGACTTAGAGATATCTTTGTTATTAAATGTTCCTTTTGATGGT AGGTGGTTACGTATGATGTAGTCTTTAGTTGGATTTAGGTTTGGTTTAGTGGCGTAATATTTTAATTTAAAAATAT ACGATTGATTTGAAGGTTGTAAAATCTTCTACTTTCTTAATAAGTGGATTGACGTAAGAATTTATATGAATTGTA CTTAAAGATTTTGTATAGTTTAATTTAATGTATCGGTTACGTTGGTGAATAGAGGATCAGTTTAAGTACGA AAATAATAAGGATTTGATATCTTGATTTGTCTCTTTGGATCATAAGCGTGTTGGTGTTGTTTATATTATTCTTGG TTTAATAGGTGGTTTTGGTAAATATCTTCTTCCGTTTTTTTGAGTATGAGTGATTTAGCTTTGCCTCGTTTAAA TTCTTTGAGTGTTTGAATGATGGTTCCTTCAATATTTTATATGGAATTGAGTTTGTATTATGGATCTGGTGTTGG TTGGACCTTTTATCCACCTTTGTCTTCTTTAGCTACTTCTGGTGTGGTGTGGGATTACTTAATGTTCTCTTTACA TCTTGCTGGTGTATCTAGTTTGATTGGTTCTATAAATTTTATTACTACTATAATGTTGCGTCTAAGGTCATGTTCT ACTATGTTGTTGTTGATCGTAAATTTGGTACTGCTTTTTTTGAGCCAGCAGGTGGTGGTGATCCTGTGTTATT TCAACATTTATTTTGGTTTTTGGTCACCCAGAAGTATATGTTTTGATATTGCCTGGATTTGGTATAGTAAGTCA

TATATGTATGTCTTTAAGTAATAATAATACTTCGTTTGGATATTATGGGTTAGTTTGTGCTATGGGTTCTATAGTG GTTCTGTAACAATGATTATAGGTATACCAACAGGTATTAAGGTGTTTTCTTGATTATATGTTAGGGAGTAGT GGGTTGCGTGCGGCTGATCCAATACTTTGGTGAATTGTTGGTTTATATTTTTGTTTACAGTTGGTGGTGTTA CTGGGATAGTTTTATCTGCTTCTGCTTTGGATAGATTATTTCACGATACTTGATTTGTGATAGCTCACTTTCATT ATTATTTAGGTGTTCATGGGTTGCCACGTCGTGTTAGATGTTATGATCCTGAGTTTTATTTGGTTAAAGTTTTTA GGAGTATAGGTGGTGTGTGTATCTGTAACTAGTTCGATGGTTTTTATGTGTTTTATGAGAATCGTTGAGTGTT ATATGATTGTAGTAGTATATAAAGGATACATAGTTTAAGGTAAAATGATGCTTTTGTAAAGCATTGATAGATGAA GTATTTTCTTGTTTTCATTTAAGATTAGAGTCTGCTGTAAATAGTTTTGTCTTTGGTTAAAGTACCTTTTGCATC ATGATTCTTTGAGATGTTTAGATTATTTCTAGTTCCCGAATGGCTTATGATTTTCATTGATTCATAGCAAGTTTG TTATTTGTCTTTAATTCTGTTCAACTGTTTATCAAAAACATTGCTATTTGTTGGATTTAAATAGTATGGCCTGCCC AATGTTGTAAATTAATGGTCGCAGTTTTACTGTGCTAAGGTAGCATAATATATCGCTTCTTAATTAGTGGCTTGT GAATGGTTTAATGAAATAGAATATTTAAATGATGACTATATCTGAAATTGATTTAGTGGTGCGGAATCCATTGTT TTTATTTTTAGATCCTATATATTGATGGATATAGGTTAAAGTTACCTCGGGGATAACTGAGTAAAGAGTTGTGA GAGGTCTTATTGATCAACTTGTTACTACCTCGATGTTGGCTTAAAGAACCTTTATGGTGTAGCAGCTATATAAG GTGGTCTGTTCGACCATTAAATCTTTATGAGTTGAGTTAAGACCGGTGTAAGCCAGGTCGGTTCTTATCTATA AGTGAATCTAGTTAGTACGAAAGGAATATTAGAGTGTAAGATGTTGCATGTTAATGTTAGAATACGTAATTAG TATACTCTGCAAAAGTATAGATAGTAATGATGTTTTACTCGTATTTTTATACAATTTAACCCTGGTTGAAGTTGA AATATATCTAATGATGCTATATACGTTTATTATATTATGCTAATCCTTGAGCATATAAATTTGAGGTGGTTGTAGTA GGTTAAATAGGTTTTTTTTGAGAATACTTCAATGATGTGTAAAGTTCCAGTATAAAGACAGGGATTAGATAC CCCTTTATTAGGATAAAAAATTTTTGTCCACGGTTTCAAACTGAAAGGGTTTGGCAGCAAACTAAATTCTTCC GGGGGAAGGTGCTTATTAAAGAGATGATCCGCTTATTAATTTACTATATCTAGTGTTAGTGTATATCCGTTTGTA TATTCACGCTTAGAGGTCATAAGTGGGTAAATATTAAATAATTTAAGGCAGGTCTATATGCTGCTAATGGTATA GGTTGTTGTGCGTTACAATAAAAAGTTTAAATACTGAAATGTATTTTTATTTTGGGACTCGGAAGTAGGAATG TAAATAGTATGTCATTTCGAAGGTTGAAATAGTTTGGGTACACATCGCCCGACAATCTCGATGCGTAATTGAG TTAAGTCGTAACATGGTAGTGCTTGAAGAATCAGGCGCTAGAATCTGTATAATGCGTTTAAAACATGAGCTTT TAATTTATTATGACCTAGTTAAATACGTGTTATTTTTGTGTTGTTTATTCCACTGTGGTGTATGATAGTGATGTG CTATCAAATATATAATTCCCGCAAAATGAGAATAATGTTACCTAATGAAAGTCCATTTTTAGAGTTTATTTGAAC TGAAAGAACCAATAAAGATAGTTGGCCATCAGTGATATTGAACATACGAGTTGTTGGATGGTAGGGTTTATGA ATCAATAGTGTTATAGGTAGATTTGATCGTTTGGTGTCTTCGTCGGTTATTGTACTGAATTATGTGGTGCTGG