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1. Data and Methods 

Epidemiological data 

A monthly time series of Plasmodium falciparum cases confirmed through microscopy 

examination of blood slides from clinical (febrile) individuals is used in this study.  The data is 

from 159 subunits (kebeles) surrounding the Debre Zeit sector, collected at the malaria 

examination and treatment center in Bishoftu town for the period from September 1993 to 

February 2007.  We have excluded malaria data after August 2005 because of the introduction of 

a new treatment (ACTs) for P. falciparum in September 2005 in the aftermath of the severe 

epidemic years (2002-2004) in Ethiopia. The attached movie shows the spatial distribution of the 

number of malaria cases (normalized by population) in each kebele for every month in this time 

period. In order to look at the dynamics at the seasonal level, we aggregated the monthly data for 

each kebele into four month seasonal blocks for January-March (JFMA), May-August (MJJA), 

September-December (SOND), representing respectively the low, intermediate and high 

transmission seasons (for a total of 11 data points per kebele for each of JFMA, MJJA and 

SOND seasons).   



 

Demographic and cartographic data 

Each of the 159 kebele further encompasses up to 4 smaller administrative sub-units for which 

population data were obtained from the Central Statistical Agency of Ethiopia for 1994 and 2007 

[1-2].  We interpolated these population data temporally based on growth rates between the two 

censuses conducted in 1994 and 2007, separately considering changes in urban and rural 

populations at the district level. Spatial coordinates for these sub-units were obtained from the 

Oromia regional Bureau of Health. These coordinates, along with the population data, were used 

to weight all spatially explicit variables and obtain population weighted estimates aggregated at 

the kebele level.  

Two estimates of population density were considered. After spatially overlaying the 

administrative sub-units with their population sizes, we drew two circles of 5 and 10 km radii 

respectively, around each of these. The sum of the population of the sub-units that fall within 

each of these circles was divided by the area of the circle to obtain two estimates of population 

density for each sub-unit The value was calculated separately for each sub-unit, for each 4 month 

block, since population growth rates may vary depending on which district the sub-unit belongs 

to.  These values were then averaged at the kebele level to obtain two estimates of population 

density for each kebele.   

We obtained the digital elevation model (DEM) at a 30-meters resolution from the Global Earth 

portal managed by USGS [3].  By using ArcGIS software tools, we generated gridded slopes 

from the high resolution DEM. For better data manageability, we resampled the high resolution 

DEM, averaged at a 5-arc-minutes resolution. Finally, we overlaid the locations of our 

administrative sub-units on the DEM and the slope gridded surfaces to obtain estimates for 

altitude and slope respectively at the sub-unit level. 

 

Climate Data 

Daily readings of minimum and maximum temperature for Ethiopian stations were obtained 

from the National Meteorological Agency (NMA). Four meteorological stations in Ethiopia 

situated in close proximity to the study areas (namely Addis Ababa (Bole), Addis Ababa (Obs), 

Adama and Debre Zeit) were selected based on their proximity to Bisoftu/ Debre Zeit town and 

their high correlation with the Debre Zeit’s station readings. Missing data were filled by 

estimating from the linear association between altitudes and temperatures, the values for the 

remaining station. We then developed regional minimum and maximum temperature lapse rates 

for each month of the year. This was done by pooling all four-station readings for a single month 

of the year (eg. January) and regressing the temperature readings on the corresponding station 

altitude values to estimate a slope (the change in temperature for a given change in altitude).  



These slopes were used to estimate the minimum and maximum monthly temperature at the 

altitude of each administrative sub-unit, by assuming the average of the four-station readings 

corresponds to the average altitude of the four stations (=2071 meters above sea level).  

Estimates at each administrative sub-unit were weighted by their respective population and 

averaged at the kebele level.   

Our approach of using altitudinal difference as a proxy for temperature difference over space is 

appropriate for this study because (a) the kebeles have close proximity of stations - all 154 

kebeles are within 50 km from a station (5 kebeles have distance between 50 and 57km) (b) all 

kebeles being within a single rainfall regime -one of a total of 12 in Ethiopia [4] (c) All kebeles 

in the study are on the same side of a continuous elevation gradient (with the exception of 7 in 

the far north), constituting part of a single micro climate.  

We further assessed temperature readings and locations of the four stations (a) the four sites are 

appropriately situated on two opposite sides (East and West) and in the middle of study area, 

providing good spatial spread of sample data for interpolation (see Fig. S2 B) (b) single year DJF 

mean temperature for the four sites are highly associated with altitude (R-squared ranging from 

0.88 to 0.99 with median 0.95 for all 11 seasons). (c) year to year DJF mean temperature have 

high associations across sites (R-squared ranging from 0.84 to 0.96 for the all combinations of 

two stations). 

Moreover, in seasons with stable low moisture and thus pressure levels, relative humidity 

decreases strongly as temperature increases. Since, we are focusing on the dry period of the year, 

during which the moisture level in the entire region is uniformly at its lowest level, we expect 

relative humidity to be driven by temperature and not vise-versa. Therefore, we believe the effect 

of humidity on temperature in the months of DJF will be minimal, and thus differences in 

altitude can be reasonable approximations to differences in temperature.  

Daily readings of rainfall from 13 stations in close proximity to Bishoftu town were obtained 

from the National Meteorological Agency (NMA). These stations are Addis Ababa (Bole), Addis 

Ababa (Obs), Aleltu, Chefe Donsa,  Debre Zeit, Dertu Liben, Ejere, Guranda Meta, Hombole 

(had only 9 months of data), Koka Dam, Mojo, Nazeret and Sebeta. Missing data were filled by 

randomly selecting one reading from the same date of the year in the four nearby years: two 

years prior and two years after. If missing data were for Feb 29th of a leap year, we randomly 

selected from the Feb 28th data for the four years. Daily readings from these stations were then 

spatially interpolated by using ordinary Kriging [5]. We cross-validated model estimates at each 

station by varying the type of variogram model and its parameters (sill, nugget and range). We 

selected the best global parameters from a range of reasonable values by comparing the root 

mean square errors for all stations [6]. The interpolated grids were constructed to have a spatial 

resolution of 0.5 degrees and to cover the entire study region. Administrative sub-unit 

coordinates were then overlaid to obtain (drill down) daily estimates, which were then 

aggregated at the kebele level weighted by the sub-unit population.  



Finally, all daily estimates of rainfall and temperature were aggregated at one, two and three 

month blocks to examine associations with cases in the low transmission season. 

 

Figure S1: Annual cycle for cases (black line), rainfall (blue line) and temperature (red line) for 

our study area.  

Monthly Sea Surface Temperature (SST) anomalies for the Niño 3.4 region were obtained from 

NOAA Optimal Interpolation SST Version 2 database [7]. Monthly average Normalized 

Difference Vegetation Index (NDVI) at a resolution of 0.1 degrees were also obtained from the 

IRI analysis of USGS data for the period 1993 to 2004 [8]. For 2005, we obtained NDVI from 

the MODIS/Terra Vegetation Indices for the year 2005 [9] at a temporal resolution of 16 days 

and spatial resolution of 500m, which were aggregated to obtain monthly averages at a resolution 

of 0.1 degree which matches those preceding 2005.. 

We used shape files of perennial rivers obtained from Food and Agriculture Organization [10], 

and lakes obtained from the Environmental Systems Research Institute [11], and computed the 

distance between each administrative sub-unit and its closest perennial water body.  This 

distance was considered to have a decay effect (the effect on malaria transmission decays 

exponentially as distance increases); thus we used the inverse-square distance.   

In addition, to examine the ability of local soils to retain rain water (or water holding capacity), 

we used the GAEZ soil database [12] for the dominant soil type at a resolution of 5 arc minutes. 

We also obtained ISRIC-WISE soil water content data (in mm) at 30 arc minutes resolution [13], 

which includes relative size of different soil types and their specific water capacities.  By 

matching the higher resolution dominant soil types layer to the water capacity layer sorted by 

area size, we were able to obtain water capacity at higher resolution of 5 arc minutes. We then 

overlaid the administrative sub-units coordinates on the water holding capacity layer to estimate 

values at each subunit. 

 



Least-cost distance estimates 

A least-cost measure is based on the notion that some landscapes are more difficult and costly to 

traverse than others [14]. is based on the concept of minimizing the accumulated cost of a 

traveler in moving from point A to point B within a landscape. If the cost of traveling a certain 

distance is equal for all directions, then the least-cost distance is the Euclidean distance. The 

concept has been well developed in transportation, environmental economics and archeology, 

where economic and social forces have a recognized influence on the spatial distribution of 

events [15-16]. In relation to infectious disease dynamics, the concept applies to capturing 

differences in connectivity between regions resulting from social and economic activities.  We 

capture these differences by incorporating differences in travel infrastructure types including 

trails, the latter being of particular importance during the dry season.    

In this study, we assume cost of travel is contingent on the kind of surface, namely paved roads, 

gravel roads or walking trails.  Studies have compared costs of travel for paved and dirt roads 

[15], as well as for paved roads and hiking trails [17]. We recognize that in addition to taking a 

longer time, walking is more laborious as compared to traveling on vehicles that utilize roads. 

While the cost of these transportation means is context specific (depending on availability, the 

quality of roads, the opportunity cost of walking etc.), we use these different categories as 

reference points for constructing our own assumptions.  We specifically assume that for a given 

distance, travel on gravel roads is 1.5 times costlier than that on paved roads, while walking is 

two times costlier. Although this estimate seems conservative, it is more likely to be closer to 

reality than an approach lacking any concept of cost and implying equal cost per distance for all 

means of mobility. 

Neighborhood Structures 

We plotted all possible routes of connectivity between each administrative sub-units (n=342) 

using geographic information system (GIS) methods. We identified the least-cost routes for each 

pair of administrative sub-units using the ArcGIS´s Network Analyst tool. Then neighborhood 

structures were implemented by considering 1) adjacent kebeles where neighborhood consists of 

kebeles with common borders (2) kebeles with sub units at most 5km (paved road distance 

equivalent) apart (3) kebeles with sub units at most 10km apart (paved road equivalent).  



2. Supplementary results:  

 

 

 
 

Figure S2: Figure A shows the population density obtained by adding all populations within a 

5km radius around each administrative sub-unit (up to 4 per kebele), and by dividing the value 

by the area of the circle (see text for details). The high-density area at the center corresponds to 

the Bishoftu/ Debre zeit town (A). Figure B shows the elevation map, with elevation weighted by 

the population size of the administrative sub-units within each kebele (see text for details). The 

green points indicate the location of the four meteorological stations used to interpolate mean 

temperature based on elevation of sub-units in each kebele. The four meteorological stations are 

Addis Ababa Bole, Addis Ababa Obs, Adama and Debre Zeit. 

 

Table S1: Distribution of kebeles by observed and predicted quantiles of cases 

 Observed 

No case Very low Low High Very High 

 

 

predicted 

No case 883 113 27 13 2 

Very low 163 85 47 35 16 

Low 23 32 26 28 7 

High 6 15 16 43 26 

Very high 5 10 8 32 88 

 

 



 

Figure S3: Model predictions are compared to observations for all 11 years based on the best 

GLMM model (that includes structured and unstructured random effects).  The top two rows of 

panels show maps for the predicted and observed quantiles respectively. The quantiles were 

generated by considering zero cases in one class, and subdividing all nonzero JFMA cases into 

four equally-sized intervals, with the resulting categories representing respectively no cases, very 

low, low, high and very high cases, and the corresponding colors ranging from yellow to red. 

The lower row shows  scatter plots (C and F) for  predicted against observed cases (in 

logarithmic scale), which include the identity line for comparison (in red). The size of each circle 

in the scatter plots is scaled by the square root of the number of predicted-observed pairs  at that 

point, with the highest number  obtained for the (0, 0) pair 

 



 

Figure S4: Comparison of predictions (y-axis) and observations (x-axis) for the GLMM model 

that includes structured and unstructured random effects. Cases for individual kebeles and 

seasons are shown in log scale. As for Figure 3, predictions are obtained for 10,000 simulations 

of the model with parameters sampled from the posterior distribution of estimated parameters. 

Here, a distribution is obtained for all the predictions that correspond to a given observed value. 

The black dots represent the medians of these distributions and the red vertical intervals, the 95 

Credible Intervals. Each dot is surrounded by a circle whose size is scaled by the square root of 

the number of predictions at that observed value). For example, the highest number  (n=1080) is 

obtained for  (0, 0), and numbers decrease with incidence.  Median predictions for the most part 

fall along the identity line (in red) with a slight tendency to under-predict at the high end of the 

cases. The exception is one outlier (x about 4) whose CI does not straddle the diagonal, which 

represents a single kebele and a single season (1998). This kebele (Ejersa) is found in the south-

east corner of our region, at low altitudes for the region but in a typically dry area. Its proximity 

to a lake and its location along a major road might explain our under-prediction for this warm 

year.     



 

Table S2: Coefficients of the best GLMM model for the high transmission season (SOND) 

cases  

Covariate Median  95% CI R-hat 

Total JJA rainfall β1 -0.1188 [-0.1654, -0.0729] 1.001 

Mean JJAS temperature β2  0.6750 [0.5853, 0.7665] 1.001 

Population density β3 -0.1681 [-0.4000, 0.0738] 1.009 

Indoor Residual Spraying β4 -0.2810 [-0.4727, -0.0806] 1.001 

Lagged malaria relative risk γ  0.2934 [1.3400, 1.5183] 1.001 

Spatial unstructured hyper-parameter σ
2
ϕ  0.0115 [0.0003, 0.1419] 1.163 

Spatial structured hyper-parameter σ
2
ν  4.1288 [2.9638, 5.7176]  1.003 

Over dispersion parameter θ 
-1

  1.9180 [1.7000, 2.1600] 1.001 

 

Credible Intervals (CI) obtained from the 2.5% and 97.5% quantiles of the distribution. 

 

Model results based on a subset of the data 

 

The following results are based on a model trained based on a subset of the data consisting of the 

first six year only.    

 

Table S3: Coefficients of the best model for the cases in the low transmission season (JFMA)   

fitted to six years of data (1995-2000).  The results show rainfall is no longer  significant at the 

0.05 level, but all other variables and in particular population density remain significant..   

 

Covariate Median  95% CI* R-hat 

Total DJF rainfall β1 -0.0773 [-0.056, 0.213] 1.009 

Mean DJF temperature β2 0.4073 [0.260, 0.556] 1.009 

Population density β3 0.1604 [0.088, 0.233] 1.002 

Lagged malaria relative risk γ 1.2870 [1.192, 1.396] 1.001 

Spatial unstructured hyper-

parameter 

σ
2
ϕ 0.0097 [0.001, 0.099] 1.020 

Spatial structured hyper-parameter σ
2
ν 0.4077 [0.181, 0.792]  1.003 

Over dispersion parameter θ 
-1 

3.1895 [2.403, 4.344] 1.002 

 

** this model was trained by using a subset of the dataset by taking the first six years of data. 

* Credible Intervals (CI) obtained from the 2.5% and 97.5% quantiles of each parameter’s 

distribution. 

 

 



 

 

 

Figure S5: Model predictions are compared to observations for all five years based on the best 

GLMM model (that includes structured and unstructured random effects). The model was fitted 

using  the first 6 years of data (1995-2000) only, and predictions presented here are for the 

remaining, “out-of-fit” years, post-2000 The top two rows of panels show maps for the predicted 

and observed quantiles respectively. The quantiles were generated by considering zero cases in 

one class, and subdividing all nonzero JFMA cases into four equally-sized intervals, with the 

resulting categories representing respectively no cases, very low, low, high and very high cases, 

and the corresponding colors ranging from yellow to red. The lower row shows scatter plots (C 

and F) for predicted against observed cases (in logarithmic scale), which include the identity line 

for comparison (in red). The size of each circle in the scatter plots is scaled by the square root of 

the number of predicted-observed pairs at that point, with the highest number  obtained for the 

(0, 0) pair.    

 

 

 



 
Figure S6: Observed Vs median of fitted JFMA cases (in log scale) with the best best GLMM 

model (that includes structured and unstructured random effects) rained with data from the first 6 

years (1995-2000) only.  Each dot represents a single kebele’s JFMA cases over the 5 years 

(2001-2005) not included in the model training.  The size of each circle in the scatter plots is 

scaled by the square root of the frequency at that point, with the highest frequency (n=439) 

obtained at the (0, 0) point. Note that the years for which these analysis are done were not part of 

the dataset used in model training. 
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