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Table S1. Sample sizes. Number of individuals (and families) measured for their voluntary

wheel running over a 6-days period in control (C) and high-runner (HR) lines of mice, for the

entire dataset (generations 0 to 31) and different periods.

Generation C HR Total
0 to 10

Individuals 1,687 4,493 6,180
Families 443 441 884

11 to 20
Individuals 1,569 3,740 5,309
Families 400 397 797

21 to 31
Individuals 1,680 4,159 5,839
Families 432 432 864

0 to 31
Individuals 4,936 12,392 17,328
Families 1,275 1,270 2,545
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Table S2. Summary of the genetic covariance tensor applied to the 24 G matrices estimated for each of the 8 lines and 3 generation

blocks. Shown are the eigenvectors (e; ordered by rows in terms of the absolute value) of the two leading eigentensors (E1 and E2),

their eigenvalues and the percent of variation each eigentensor explains within their respective E, and loadings on each trait (wheel

running on days 1 to 6). This table shows that the leading eigentensor (E1) captured a large part (75.6%) of the variance among G

matrices and that the leading eigenvector e11 explained 99.6% of the variation captured by E1, with loadings ranging from -0.35 to -

0.45 only. Applying the tensor analysis to the 24 G matrices estimated for each line and generation block yielded results that are

consistent with the analysis in which control and selected lines are pooled (see table 1).

Eigentensors
(E)

Eigenvalues
of E

% of
total

variation
explained

Eigenvectors
(e) of E

Eigenvalues
of e

% of
variation
explained

in E

Trait loadings

day 1 day 2 day 3 day 4 day 5 day 6

E1 0.2793 76.5% e1.1 -0.998 99.6% -0.348 -0.401 -0.400 -0.435 -0.448 -0.410

e1.2 -0.046 0.2% 0.753 0.305 0.018 -0.147 -0.289 -0.485

e1.3 -0.034 0.1% 0.444 -0.286 -0.336 -0.536 0.279 0.493

e1.4 -0.021 0.0% 0.063 0.209 -0.829 0.505 -0.060 0.082

e1.5 -0.018 0.0% -0.295 0.762 -0.067 -0.458 -0.202 0.278

e1.6 -0.013 0.0% 0.154 -0.200 0.187 0.195 -0.771 0.519

E2 0.0279 7.7% e2.1 0.711 50.5% -0.788 -0.524 -0.263 -0.178 -0.067 -0.020

e2.2 -0.703 49.5% 0.289 -0.055 -0.292 -0.402 -0.578 -0.577

e2.3 -0.020 0.0% 0.267 -0.269 0.136 -0.779 0.439 0.194

e2.4 0.012 0.0% -0.170 0.171 0.475 -0.272 -0.637 0.486

e2.5 -0.002 0.0% 0.413 -0.774 0.108 0.351 -0.228 0.209

e2.6 0.000 0.0% 0.160 0.150 -0.768 -0.043 -0.106 0.591
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Table S3. Vector of realized selection gradients (β) applied to voluntary wheel running on each

day of a 6-day period of wheel access. Posterior modes with their 95% highest posterior density

(HPD) intervals obtained from a multiple regression of relative fitness (number of pups

produced) were obtained using different blocks of generations. The target of selection was the

average number of wheel revolutions on days 5&6. Boldface highlights selection gradients that

were significantly different from zero (i.e., the 95% HPD did not overlap with zero). Note that

some selection gradients on days 1 to 4 were negative and significantly different from zero.

generation
block trait β

95% HPD
lower upper

0-10 day 1 -0.077 -0.152 -0.026
0-10 day 2 -0.092 -0.171 -0.017
0-10 day 3 0.010 -0.068 0.094
0-10 day 4 -0.064 -0.154 0.008
0-10 day 5 0.758 0.668 0.847
0-10 day 6 0.528 0.445 0.625

11-20 day 1 -0.024 -0.111 0.038
11-20 day 2 0.003 -0.103 0.083
11-20 day 3 -0.018 -0.104 0.078
11-20 day 4 -0.111 -0.230 -0.033
11-20 day 5 0.457 0.352 0.569
11-20 day 6 0.721 0.611 0.802

21-31 day 1 -0.072 -0.158 0.006
21-31 day 2 0.065 -0.038 0.175
21-31 day 3 -0.127 -0.239 -0.022
21-31 day 4 -0.003 -0.136 0.096
21-31 day 5 0.481 0.333 0.568
21-31 day 6 0.542 0.411 0.611
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Table S4. Predicted response to selection (R). Posterior modes and 95% highest posterior

density (HPD) intervals for the six behavioural traits in control (C) and selected (HR; for “high

runner”) mice in different blocks of generations. To obtain the posterior distribution of R that

incorporates the uncertainty in estimates of both G and β, we applied the multivariate breeder’s

equation to the ith sample of the MCMC posterior distribution for G with the ith sample of the

MCMC posterior distribution for β (table S2). These calculations were made separately for each

generation block (i.e., using the six G-matrices in figure S3 and the 3 β in table S3). This table

demonstrates that the predicted response to selection was ~4-fold lower in HR than C mice, but

that the R for days 5&6 in generations 21-31 was still significantly different from zero, even for

HR mice.

generation
block trait

C HR
R lower upper R lower upper

0-10 day 1 0.13 0.06 0.21 0.04 0.01 0.06
0-10 day 2 0.15 0.08 0.24 0.04 0.02 0.08
0-10 day 3 0.15 0.08 0.25 0.04 0.01 0.07
0-10 day 4 0.16 0.09 0.27 0.03 0.02 0.07
0-10 day 5 0.20 0.14 0.32 0.06 0.03 0.08
0-10 day 6 0.24 0.14 0.33 0.06 0.04 0.10

11-20 day 1 0.17 0.08 0.25 0.02 0.00 0.05
11-20 day 2 0.13 0.08 0.24 0.03 0.01 0.05
11-20 day 3 0.14 0.06 0.23 0.02 0.00 0.05
11-20 day 4 0.18 0.10 0.28 0.04 0.02 0.08
11-20 day 5 0.19 0.13 0.32 0.06 0.04 0.09
11-20 day 6 0.18 0.10 0.26 0.06 0.04 0.08

21-31 day 1 0.14 0.08 0.22 0.03 0.00 0.06
21-31 day 2 0.18 0.11 0.27 0.03 0.01 0.06
21-31 day 3 0.17 0.11 0.27 0.03 0.01 0.06
21-31 day 4 0.19 0.11 0.28 0.04 0.01 0.07
21-31 day 5 0.24 0.15 0.34 0.05 0.03 0.09
21-31 day 6 0.24 0.15 0.33 0.05 0.03 0.08



6

Figure S1. Daily and generational increases in wheel running in mice. Shown are the daily

average number of wheel revolutions run (pooled means±sd [ignoring family structure] for four

replicate lines in each selection group) over a 6-day period of wheel access in four replicate

control (C; blue) and four replicate selected (HR, for “high runners”; red) mice over a 6-day

period of wheel access, from generation 0 (before any selection was applied) to 31.

0

5000

10000

15000

20000

DAY

R
U

N

gen 0

DAY

R
U

N
gen 1

DAY

R
U

N

gen 2

DAY

R
U

N

gen 3

DAY

R
U

N

gen 4

DAY

R
U

N

gen 5

DAY

R
U

N

gen 6

DAY

R
U

N

gen 7

0

5000

10000

15000

20000

DAY

R
U

N

gen 8

DAY

R
U

N

gen 9

DAY

R
U

N

gen 10

DAY

R
U

N

gen 11

DAY

R
U

N

gen 12

DAY

R
U

N

gen 13

DAY

R
U

N

gen 14

DAY

R
U

N

gen 15

0

5000

10000

15000

20000

DAY

R
U

N

gen 16

DAY

R
U

N

gen 17

DAY

R
U

N

gen 18

DAY

R
U

N

gen 19

DAY

R
U

N

gen 20

DAY

R
U

N

gen 21

DAY
R

U
N

gen 22

DAY

R
U

N

gen 23

1 3 5

0

5000

10000

15000

20000

DAY

R
U

N

gen 24

1 3 5

DAY

R
U

N

gen 25

1 3 5

DAY

R
U

N

gen 26

1 3 5

DAY

R
U

N

gen 27

1 3 5

DAY

R
U

N

gen 28

1 3 5

DAY

R
U

N

gen 29

1 3 5

DAY

R
U

N
gen 30

1 3 5

DAY

R
U

N

gen 31

av
er

ag
e 

(±
sd

) 
nu

m
be

r 
of

 w
he

el
 r

ev
ol

ut
io

ns

day



7

Figure S2. Convergence for MCMCglmm models. (a-c) Autocorrelation (i.e., at lag 1) of the

1,000 posterior samples for each of the estimated variance components in multivariate animal

models run on pooled data for control (blue) and selected (red) mice for different generation

blocks. No (co)variance component exceeded the nominal autocorrelation of 0.1. These

diagnostic plots indicate that the MCMCglmm models converged properly.

-0.10

-0.05

0.00

0.05

0.10

x - 0.05

an
im

al
[,

 1
]

(a)

au
to

co
rr

el
at

io
n

1,1 2,1 3,1 4,1 5,1 6,1 2,2 3,2 4,2 5,2 6,2 3,3 4,3 5,3 6,3 4,4 5,4 6,4 5,5 6,5 6,6

additive-genetic (co)variance element

-0.10

-0.05

0.00

0.05

0.10

x - 0.05

m
ot

he
r[

, 1
]

(b )

au
to

co
rr

el
at

io
n

1,1 2,1 3,1 4,1 5,1 6,1 2,2 3,2 4,2 5,2 6,2 3,3 4,3 5,3 6,3 4,4 5,4 6,4 5,5 6,5 6,6

common environmental (co)variance element

-0.10

-0.05

0.00

0.05

0.10

x - 0.05

re
si

ds
[,

 1
]

(c)

au
to

co
rr

el
at

io
n

1,1 2,1 3,1 4,1 5,1 6,1 2,2 3,2 4,2 5,2 6,2 3,3 4,3 5,3 6,3 4,4 5,4 6,4 5,5 6,5 6,6

residual (co)variance element

generations

0-10
11-20
21-31



8

Figure S3. The estimated additive-genetic variance-covariance matrices (G) in control and

selected mice, based on pooled analyses of all 4 replicate lines in each group). Shown are the

posterior modes from Bayesian multivariate animal models fitted with MCMCglmm in R on

different blocks of generations (0 to 10, 11 to 20, and 21 to 31). For each G, the main diagonal

represents the additive-genetic variances (VA) and the off-diagonals represent the additive-

genetic covariances (COVA) for pairs of traits (voluntary wheel running on each of 6 consecutive

days). The cells of the matrix are shaded according to its value (darker cell = higher VA or

COVA: all values are positive). (See figure S4d-f for the genetic correlations.)
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Figure S4. Elements of the additive-genetic variance-covariance matrices. (a-c) The posterior

modes (dots) and 95% credible intervals (lines) of the highest posterior density from Bayesian

multivariate animal models fitted with MCMCglmm in R on different blocks of generations (0 to

10, 11 to 20, and 21 to 31). Each point represents the same element of the matrix [additive-

genetic variance (VA) and co-variance (COVA)] in selected mice (on the y axis) vs. control mice

(on the x axis). The dashed line shows the 1:1 line. Note that compared to control, selected mice

always have lower VA for all 6 days of wheel running, and weaker positive COVA among those

traits. (d-f) Also shown are the corresponding narrow-sense heritability (h2) and genetic

correlations (rA).
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Figure S5. Changes in the additive-genetic variance-covariance matrix (G) induced by selection,

presented at the level of replicate lines (control lines: 1, 2, 4, and 5; selected line: 3, 6, 7, and 8).

(a) Variance [α; ±95% highest posterior density (HPD) intervals] accounted for by each

eigentensor for the observed (black dots) and randomized (i.e., null hypothesis; grey dots) sets of

G. (b) “Heat map” displaying the pattern of greatest variation among Gs as captured by E1

(darker shading indicates greater variation among G matrices as measured by elements of E1,

which reflect variance of the (co)variances among the 6 G matrices). Hence, variability among G

matrices was distributed throughout the entire matrix, but slightly more intense for trait

combinations involving days 4-6 compared to those earlier in the day sequence. (c) The additive-

genetic variance (VA) present in each of the four replicate control lines (C; blue) and four

replicate selected lines (HR; red) along the direction of the first eigenvector of E1 (i.e., e11)

across generation blocks. Altogether, this figure shows that the effect of selection on G was

repeatable and that variance among G matrices was not caused solely by random genetic drift.
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Figure S6. Heritability (±se) of voluntary wheel running on days 5&6 (the selected trait)

estimated with offspring-on-midparent regressions in generation -1 and 0 by Swallow et al.

(Behav. Genet. 28: 227-237) and in control (C; blue dots) and selected (HR; red triangles) mice

using data from generation 0 to 1, 1 to 2, 2 to 3, and 3 to 4. For C and HR mice separately, we

first calculated residual values in a model that included several fixed effects fit within generation

[sex, age, inbreeding coefficient, line, and measurement block (batches 1-3 and rooms 1-2)]. The

residuals of these models were then used in regressions weighted for litter size using an iterative

process as described in Lynch and Walsh (1998, Genetics and Analysis of Quantitative traits,

p541), using the “osw.R” function accompanying Careau et al. (2013, Evolution 67: 3102-3119).

The weight (wi) of the ith family was calculated as wi=ni/[ni(t–B)+(1–t)], where ni is the number

of mice that were wheel-tested in that family, t the intraclass correlation coefficient (for that line

at that generation), and B is the slope squared divided by two. This figure shows that heritability

of wheel running was initially similar in C and HR mice, but rapidly declined in HR mice.
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Figure S7. Changes in the additive-genetic variance-covariance matrix (G) induced by selection,

presented as in Figure 2 (main text; see also figure S5 above), except that the genetic covariance

tensor was applied to blocks of 4 generations in control (C) and selected (HR) mice. Altogether,

this figure shows that VA along e11 was similar in C and HR mice at the beginning of the

experiment (generation 0-3), after which C and HR mice gradually diverged. Note that for this

analysis, the sample size to estimate G was quite low (C mice: mean n = 617, range = 596-649;

HR mice: mean n = 1,619, range = 1,405-1,631).
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Figure S8. Absence of detectable change in the additive-genetic variance-covariance matrix (G)

in selected mice, based on pooled analyses of all 4 lines. This shows each element of G [i.e.,

additive-genetic variance (VA) in wheel running on days 1-4 (black squares), day 5 (red square),

day 6 (blue square), and the additive-genetic covariances (COVA) among all six traits (grey

circles)] in mice selected for voluntary wheel running on days 5&6 of a 6-day exposure to

wheels, as estimated in separate MCMCglmm models run on blocks of 4 generations. Note the

absence of overall temporal change, thus indicating that the effect of selection on G occurred

very rapidly (i.e., within the first three generations). Repeating these analyses, but breaking up

the estimation of G into even smaller blocks (i.e., 2 or 3 generations), suffered from an obvious

lack of statistical power to detect changes within the first 2-3 generations of selection.
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1

Figure S9: Observed and predicted percent reductions in each element of the additive-genetic variance-covariance matrix G for wheel running on days 1-6 in mice selected for voluntary wheel2
running on days 5&6 of a 6-day exposure to wheels. Values are the % reduction from the base population G matrix (estimated for the base stock of mice used to found the control and selected lines,3
using generations -2, -1, and 0) in each element of the lower triangle of the observed G from the MCMCglmm models in the before (up-pointing triangle that is the left-most point of each trio of4
triangles), during (down-pointing triangle), and after (up-pointing triangle that is the right-most point of each trio of triangles) generation blocks along with their 95% HPD intervals. The % reduction5
was calculated as [100 × (observed G – base G) / base G]. The expected G matrices were calculated based on within-family selection operating on an index trait (average of days 5&6) in the base6
population G matrix and changes occurring through linkage disequilibrium (LD; Bulmer, 1980, The mathematical theory of quantitative genetics. Oxford University Press, Oxford, UK) and drift (or7
inbreeding within each selection line). The expected G used in place of the observed G in the percent reduction equation were calculated for 1 (circles), 10 (squares), and 20 (diamonds) generations to8
match the observed G estimated in the three corresponding generation blocks. Grey, rectangular background shading indicates the diagonal elements of G (i.e., VA) for reference.  Overall, this figure9
demonstrates that the predicted changes in the (co)variance components due to selection generating LD are much lower than the observed changes in the selected mice. Details on the theory and10
calculations are available from the authors and various references (Falconer & MacKay, 1996, Introduction to Quantitative Genetics, 4th ed. Essex, U.K.: Longman; 1996; Shaw et al., 1995,11
Evolution 49: 1260-1267; Verrier et al., 1991, Livestock Production Science 29: 93-114; Villanueva and Kennedy 1990. Theoretical and Applied Genetics 80: 746-752).12
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Appendix S1: Establishment of experimental lines

Details regarding the establishment and maintenance of the control and selected lines can be

found in previous publications (Swallow et al. 1998. Behav. Genet. 28: 227-237; Careau et al.

2013. Evolution 67: 3102-3119). Only the pertinent details are repeated here for clarity. A total

of 112 male and 112 female (each specified to be from a different family) house mice (Mus

domesticus) of the Hsd:ICR strain were purchased from Harlan Sprague Dawley, Indianapolis,

IN (Building 202, Barrier A). The history and maintenance of the Hsd:ICR strain can be found in

Swallow et al. (1998), Dohm et al. (2001. Genetics 159: 267-277), and Girard et al. (2002.

Behav. Proces. 57: 37-50).

The 224 founder animals were designated generation -2. Males and females were chosen

at random and placed into cages to form 112 pairs; the resulting offspring were designated

generation -1. Generation -1 litters were randomly assigned to one of eight lines, and one male

and one female were chosen randomly from each litter to be breeders for that line. Individuals

within each line that had been chosen to be breeders were then paired randomly except that full-

sibling mating was disallowed; 10 pairs were established for each line (plus 3 additional pairs as

backups: see below). Lines were then randomly assigned into four non-selected control (C) lines

and four selected “high-runner” (HR) lines. Their offspring were designated generation 0 and

selection was first applied at this generation in HR lines. In each of the 4 HR lines, the male and

female from each family that was ranked highest according to the selection criteria (see main

text) were randomly paired with individuals from other families in that same line, avoiding full-

sibling matings. In C lines, one male and one female were chosen at random from each family

and randomly paired, avoiding full-sibling matings. For most generations, 13 pairs were

established within each line where the first 10 litters weaned with at least two pups of each sex
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were used to maintain that line. The three extra families per line were backups to ensure that

each line was propagated with 10 families per generation.

Breeder mice were paired at approximately 10 weeks of age (except generation -2, which

was paired at 7 weeks, and generations -1 and 0, which were paired at 8.5 weeks of age) by

placing one male and one female together in a fresh cage. Males were removed and weighed 15-

18 days after pairing; births began 19 days after pairing. From 19 to 33 days after pairing,

pregnant females were checked daily between 1600 and 1800. On the day of parturition, the

number of pups was recorded. At 21 days of age, offspring were weaned from the dam, weighed,

toe clipped for individual identification, and housed in groups of four by sex. All offspring of HR

families were kept, but for each C family only a random subsample of two males and two

females was kept. At weaning, families were arbitrarily assigned to one of three wheel-running

measurement batches such that each batch contained approximately 200 mice from nearly equal

numbers of families from each line.

Probability calculations

Considering how lines were established (see above), it is very unlikely that they significantly

differed in VA at generation 0. Nevertheless, let’s assume that 4 of the 8 lines had significantly

lower VA and calculate the probability that they all ended up in the selection group (see figure S5

above). We used two methods to calculate this probability, both of which yield the same answer

(P = 0.014). The first method is based on simple probability calculation. The total number of

ways to assign 4 of the 8 lines to each selection group is:84
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which is equal to 70. Assuming that 4 of the 8 lines have high VA and 4 of 8 lines have low VA,

the number of ways of assigning all 4 low VA lines to the HR selection group is44
which is equal to 1, i.e., there is only one way in which all 4 low VA lines can be assigned to the

HR selection group. Thus, the probability of observing, by chance alone, 4 HR lines with low VA

is:

= = 170 = 0.014
The second method is based on simulation. The code below can be pasted directly into R,

to show that the probability of observing, by chance alone, 4 HR lines with low VA and 0 HR

lines with high VA is P = 0.014.

################      SIMULATION START     ####################
rm(list = ls())
set.seed(101)

# Do lines end up having high genetic variance: TRUE or FALSE
hiVar <- rep(c(TRUE, FALSE), each = 4)

calcFun <- function(...){
# randomly select 4 out of 8 lines to be in the same group -
# so the first 4 are one group
draw <- hiVar[sample.int(8)][1:4]
# Now, are those 4 lines ALL the high genetic variance lines
# (value == TRUE)

## Tests the condition (one-tailed test) that:
## all C lines VA > HR line VA

all(draw == TRUE)
}

N <- 1000000
system.time(obs <- replicate(N, expr = calcFun()))
mean(obs)
################      SIMULATION END     ####################
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Appendix S2: Genetic covariance tensor

To illustrate how the genetic covariance tensor (Hine et al., 2009. Philos Trans R Soc Lond B

364:1567-1578) is applied within a Bayesian framework (Aguirre et al., 2014. Heredity 112:21-

29), we simulated G matrices that differ in contrasting ways among populations. The R code

below simulates 3 traits in two sets of 4 populations, with 4,600 individuals in each population.

This code was used to create the datasets used to estimate G matrices shown in figure S8. In the

first scenario (populations #1a, 1b, 1c, and 1d), the G matrices gradually differ among

populations by a proportional amount (i.e., all elements of the matrix are changed by a constant

value from population 1a through population 1d). In the second scenario (populations #2a, 2b,

2c, and 2d), G matrices gradually differ among populations but more for some pairs of traits than

others (i.e., the top-left “corner” of the matrix is very similar among populations, but the lower-

right “corner” grows more and more different among populations):

############################################################################################
#######################  SIMULATIONS   START ################################
############################################################################################
rm(list = ls())
library(nadiv)
set.seed(100)

# number of traits:
t <- 3

#Because scaled (co)variances are easier to interpret/think about, we define
an 'H matrix' which contains heritabilities along the diagonal and
correlations on the off-diagonal. By first specifying a desired total
phenotypic variance for each trait, the additive genetic and environmental
covariances (G and E matrices, respectively) are easily calculated from the H
matrix.
#The first population H matrix for both scenario 1 and 2:
##heritability on the diagonal and genetic correlation on off-diagonal
H1a <- H2a <- matrix(c(0.6, 0.25, 0.25,

0.25, 0.6, 0.25,
0.25, 0.25, 0.6), t, t, byrow = TRUE)

#Now the other populations in scenario 1, creating proportional differences:
H1b <- 0.75 * H1a
H1c <- 0.50 * H1a
H1d <- 0.25 * H1a
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#Now the other populations in scenario 2, creating gradual differences:
H2b <- matrix(c(0.6, 0.18, 0.14,

0.18, 0.4, 0.2,
0.14, 0.2, 0.2), t, t, byrow = TRUE)

H2c <- matrix(c(0.6, 0.16, 0.098,
0.16, 0.3, 0.07,
0.098, 0.07, 0.15), t, t, byrow = TRUE)

H2d <- matrix(c(0.6, 0.14, 0.06,
0.14, 0.2, 0.04,
0.06, 0.04, 0.05), t, t, byrow = TRUE)

# Store all of these in an array:
Harray <- array(data = c(H1a, H1b, H1c, H1d, H2a, H2b, H2c, H2d),

dim = c(t, t, 8))

# Start with each trait and population having roughly the same phenotypic
variance of 1:
P <- diag(1, t, t)

# Fill in the diagonal elements of G for each population:
Garray <- sapply(seq(dim(Harray)[3]), FUN =
function(i){diag(diag(Harray[,,i]) * diag(P), t, t)}, simplify = "array")

# Fill in the diagonal elements of the environmental (co)variance matrix for
each population. Since P=G+E, then E=P-G:
Earray <- sapply(seq(dim(Harray)[3]), FUN = function(i){diag(diag(P) -
diag(Garray[,,i]), t, t)}, simplify = "array")

# Create and fill the diagonal for phenotypic (co)variance matrices of each
population:
Parray <- Garray + Earray

# Now, fill in the off-diagonal elements of the G, E, and P matrices
for(i in 1:dim(Harray)[3]){

for(r in 1:dim(Harray)[1]){
if(r != dim(Harray)[1]){

for(c in (r+1):dim(Harray)[2]){
Garray[r, c, i] <- Garray[c, r, i] <- Harray[r, c, i] *

sqrt(Garray[r, r, i] * Garray[c, c, i])
Parray[r, c, i] <- Parray[c, r, i] <- Harray[c, r, i] *

sqrt(Parray[r, r, i] * Parray[c, c, i])
Earray[r, c, i] <- Earray[c, r, i] <- Parray[r, c, i] - Garray[r,

c, i]
}

}
}

}

# Create a pedigree
## HS pedigree with 100 sires, 5 dams per sire, and 8 offspring per dam =
4600 individuals (2 generations):
n <- 4600

# Create array to store all of the data:
Darray <- array(dim = c(n, 13, dim(Harray)[3]))
D <- lapply(seq(dim(Darray)[3]), FUN = function(i)
as.data.frame(Darray[,,i]))
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# Create an Identity matrix for the population (so don't have to do it
repeatedly below):
I <- Diagonal(n, 1)

# For each population, create breeding values and residuals for each trait
according to the G and E covariance matrices, respectively:
for(j in 1:length(D)){

D[[j]][, 1:4] <- simPedHS(s = 100, d = 5, n = 8, uniqueDname = TRUE,
prefix = j)
A <- makeA(D[[j]][ ,1:3])

D[[j]][, 5:7] <- grfx(n, G = Garray[,,j], incidence = A, output =
"matrix")   # Breeding values

D[[j]][, 8:10] <- grfx(n, G = Earray[,,j], incidence = I, output =
"matrix") # residual deviations
D[[j]][, 11:13] <- matrix(rnorm(3, 0, 0.1), nrow = n, ncol = 3, byrow =
TRUE) + D[[j]][, 5:7] + D[[j]][, 8:10]     # phenotype of each trait with
mean ~ 0
names(D[[j]]) <- c("id", "dam", "sire", "sex", paste0("bvt", seq(t)),
paste0("et", seq(t)), paste0("pt", seq(t)))
# Add 2 columns to indicate the population and scenario
D[[j]][, "pop"] <- if(j <= 4) j else j-4
D[[j]][, "scen"] <- if(j <= 4) 1 else 2

}

# Organise into one data frame:
MasterD <- do.call(rbind, D)
save("Harray", "Garray", "Earray", "Parray", "D", "MasterD", file =
"TensorExampleSim.RData")

#load(file = "TensorExampleSim.RData")

# To show it worked
# We can also check and get the estimated covariance among breeding values in
a population and compare that to the G matrix (note, these won't be exactly
the same due to Monte Carlo error)
cov(D[[1]][, c("bvt1", "bvt2", "bvt3")])
Garray[,,1]

# Same for environmental deviations
cov(D[[1]][, c("et1", "et2", "et3")])
Earray[,,1]

############################################################################################
#######################  SIMULATIONS   END ################################
############################################################################################
####################  MCMCglmm MODELLING   START ############################
############################################################################################
library(MCMCglmm)
pops <- paste0(rep(seq(2), each = 4), rep(letters[1:4], 2))
# select the population to model [i is a number 1-8 (length of pops)]:
i <- 1

# Load the data and extract the 'popi' population data
load(file = "TensorExampleSim.RData")
assign("popi", eval(D[[i]]))
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# Prepare for MCMCglmm
names(popi)[grepl("id", names(popi))] <- "animal"
PED.popi <- popi[, 1:3]

NITT <- 13000*100; THIN <- 10*100; BURNIN <- 3000*100
PRIOR <- list(R = list(V = diag(1/2,3), nu = 2.002),

G = list(G1 = list(V = diag(1/2,3), nu = 2.002)))

M.popi <- MCMCglmm(cbind(pt1, pt2, pt3) ~ trait-1,
random = ~ us(trait):animal,
rcov = ~ us(trait):units,
family = c("gaussian", "gaussian", "gaussian"),
nitt = NITT, thin = THIN, burnin = BURNIN,
pedigree = PED.popi,
data = popi,
prior = PRIOR)

# Now re-assign general 'popi' names to be specific for the particular
population chosen and then save
assign(paste0("pop", pops[i]), eval(popi))
assign(paste0("PED.pop", pops[i]), eval(PED.popi))
assign(paste0("M.pop", pops[i]), eval(M.popi))

save(list = c(paste0("pop", pops[i]), paste0("PED.pop", pops[i]),
paste0("M.pop", pops[i])), file = paste0("TensorExampleMod_pop", pops[i],
".RData"))

############################################################################################
####################  MCMCglmm MODELLING   END ############################
############################################################################################

Looking at the simulated G matrices using heatmaps (figure S8 below), it is clear that the

differences among populations #1a, 1b, 1c, and 1d are distributed throughout the matrix, whereas

populations #2a, 2b, 2c, and 2d differ mostly in the lower-right corner of the matrix. This is

because of the R code above, in which the diagonal elements are all equal for populations 1a, 1b,

1c, and 1d and the correlations between traits are also constant, with the only difference among

populations are that the expected elements in H1b-d are 2/3, 1/2, and 1/3 the corresponding

elements in H1a. For population #2a, 2b, 2c, and 2d, the R code above simulated substantial

variation across the 4 G matrices in the lower-right corner, but not for elements in the top-left

corner.
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Figure S8. The estimated additive-genetic variance-covariance matrices (G) in the 8 simulated

populations. Shown are the posterior modes from Bayesian multivariate animal models fitted

with MCMCglmm (see example code above). For each G, the main diagonal represents the

additive-genetic variance (VA) and the off-diagonals represent the additive-genetic covariances

(COVA) for pairs of traits. The cells of the matrix are shaded according to its value (darker cell =

higher VA or COVA), using the function “image()” in R.
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We ran the code from Aguirre et al. (2014. Heredity 112:21-29) on these two sets of

simulated G matrices. The covariance tensor results match what one would conclude from

visually inspecting the patterns in heatmaps depicting the estimates of G (figure S8 above) or the

expectations in the heritability matrices (R code above, H1a-d or H2a-d). For populations 1a, 1b,

1c, and 1d, the diagonal elements are all equal within each population and the correlations

between traits are also constant. The only difference among populations are that the expected

elements in H1b-d are 2/3, 1/2, and 1/3 the corresponding elements in H1a. The covariance

tensor results reflect this, as the eigentensor E1 described 93.9% of the variation among the 4 G

matrices (table S5a). The 95% highest posterior density (HPD) intervals of α for the nonzero

eigenvalues of the genetic covariance tensor suggested that only E1 described significant

variation among the 4 G matrices (figure S9a). As expected, E1 describes changes that were

proportional because the variation across the 4 G matrices was substantial for all elements

(figure S9b). The leading eigenvector e11 explained 72.9% of the variation captured by E1 (table

S5a). Thus, most of the variation among the 4 G matrices is captured by a single combination of

traits. The trait loadings of e11 are all roughly equal (table S5a); thus the 3 traits contribute

roughly equally to the major axis of variation among G matrices. Calculating the VA along this

axis of variation shows that the changes captured in e11 were driven by the progressive decrease

in VA from population 1a (most VA) to population 2d (least VA) (figure S9c). This helps

understanding results from the selected experiment, because it is obvious from figure 2b that E1

describes changes that were mostly proportional, that all 6 traits contributed to the major axis of

variation among G matrices (table 1), and that selected mice harbour lower VA along this

direction (e11) than control mice (figure 2c).
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Table S7. Summary of the genetic covariance tensor applied to (a) simulated populations #1a,

1b, 1c, and 1d, and (b) simulated populations 2a, 2b, 2c, and 2d. Shown are the eigenvectors (e;

ordered by rows in terms of the absolute value) of each eigentensor (E), their eigenvalues, and

the percent of variation they explain within their respective E, and loadings on each trait.

Eigentensors
(E)

Eigenvalues
of E

% of total
variation
explained

Eigenvectors
(e) of E

Eigenvalues
of e

% of
variation
explained

in E

Trait loadings

trait 1 trait 2 trait 3
(a) populations 1a, 1b, 1c, and 1d

E1 0.1304 93.9% e1.1 -0.854 72.9% 0.579 0.574 0.579
e1.2 -0.415 17.2% 0.799 -0.541 -0.263
e1.3 -0.315 9.9% -0.163 -0.615 0.772

E2 0.0035 2.5% e2.1 0.713 50.8% 0.461 0.887 -0.010
e2.2 -0.655 42.9% 0.590 -0.298 0.751
e2.3 -0.252 6.4% -0.663 0.352 0.660

E3 0.0020 1.4% e3.1 0.729 53.1% 0.544 -0.678 -0.494
e3.2 -0.581 33.8% 0.812 0.278 0.513
e3.3 0.362 13.1% -0.210 -0.681 0.702

E4 0.0013 0.9% e4.1 0.707 49.9% 0.971 0.123 -0.203
e4.2 -0.640 40.9% -0.097 -0.572 -0.814
e4.3 0.302 9.1% 0.216 -0.811 0.544

E5 0.0009 0.3% e5.1 -0.835 69.8% 0.013 -0.640 0.768
e5.2 0.547 30.0% 0.850 -0.397 -0.346
e5.3 0.049 0.2% -0.526 -0.658 -0.539

E6 0.0008 0.6% e6.1 0.724 52.5% -0.563 -0.137 0.815
e6.2 -0.689 47.5% -0.478 0.858 -0.186
e6.3 0.012 0.0% 0.674 0.494 0.549

(b) populations 2a, 2b, 2c, and 2d
E1 0.1309 93.3% e1.1 -0.952 90.6% -0.276 -0.466 -0.841

e1.2 -0.296 8.8% -0.102 -0.856 0.508
e1.3 0.077 0.6% 0.956 -0.226 -0.188

E2 0.0041 2.9% e2.1 0.805 64.8% 0.959 -0.006 0.284
e2.2 -0.578 33.4% 0.031 0.996 -0.081
e2.3 0.134 1.8% -0.282 0.086 0.955

E3 0.0022 1.6% e3.1 0.886 78.6% 0.741 0.646 -0.183
e3.2 0.355 12.6% 0.647 -0.760 -0.064
e3.3 -0.297 8.8% 0.181 0.072 0.981

E4 0.0015 1.1% e4.1 0.785 61.6% 0.700 -0.473 -0.535
e4.2 -0.463 21.4% -0.694 -0.625 -0.356
e4.3 0.412 17.0% 0.167 -0.621 0.766

E5 0.0009 0.6% e5.1 -0.743 55.2% 0.649 -0.697 0.305
e5.2 0.663 43.9% 0.586 0.202 -0.785
e5.3 -0.093 0.9% 0.485 0.688 0.540

E6 0.0008 0.5% e6.1 -0.798 63.7% -0.081 0.609 -0.789
e6.2 0.602 36.2% 0.337 -0.729 -0.596
e6.3 0.005 0.0% 0.938 0.314 0.146
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Figure S9. The genetic covariance tensor approach applied to simulated G matrices from fictive

populations #1a, 1b, 1c, and 1d. (a) Variance [α; ±95% highest posterior density (HPD)

intervals] accounted for by each eigentensor (En) for the observed (black dots) and randomized

(i.e., null hypothesis; grey dots) sets of G. Because the 95% HPD intervals of the observed vs.

randomized sets of Gs did not overlap for E1, this eigentensor described significantly more

variation among the observed G than by chance. (b) “Heat map” displaying the pattern of

greatest variation among G matrices as captured by E1 (darker shading indicates more variation

among G matrices). As expected, variability among G matrices is distributed throughout the

entire matrix. (c) Across populations, the additive-genetic variance (VA) in the direction of the

first eigenvector of E1 (i.e., e11).
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We can also inspect the patterns from heatmaps depicting the estimates of G (figure S8

above) or the heritability matrices in the code for populations 2a, 2b, 2c, and 2d (see H2a-d in R

code above). In this second scenario, the four G matrices gradually change from the top-left

corner being fairly similar among populations to the bottom-right corner being very different

among populations. In the covariance tensor analysis, the eigentensor E1 described 93.3% of the

variation among the 4 G matrices (table S5b). The 95% HPD intervals of α for the nonzero

eigenvalues of the genetic covariance tensor suggested that only E1 described significant

variation among the 4 G matrices (figure S10a). As expected, E1 describes changes that were

gradually distributed throughout the matrix because the variation across the 4 G matrices was

substantial for elements in the lower-right corner, but not for elements in the top-left corner

(figure S10b). The leading eigenvector e11 explained 90.6% of the variation captured by E1 (table

S5b). The trait loadings of e11 (table S5b) for traits 1, 2, and 3 are -0.276, -0.466, and -0.841,

suggesting that they respectively contribute slightly, moderately, and strongly to the major axis

of variation among G matrices. Calculating the VA along this axis of variation shows that the

changes captured in e11 were driven by a gradual decrease in VA from population 2a (most VA) to

population 2d (least VA) (figure S10c). Again, this helps understanding results from the selected

experiment, because in figure 2b we can see that E1 describes changes that were most intense in

the lower-right corner of the G matrix (the area under most intense selection).



27

Figure S10. The genetic covariance tensor approach applied to simulated G matrices from

fictive populations 2a, 2b, 2c, and 2d. (a) Variance [α; ±95% highest posterior density (HPD)

intervals] accounted for by each eigentensor (En) for the observed (black dots) and randomized

(i.e., null hypothesis; grey dots) sets of G. Because the 95% HPD intervals of the observed vs.

randomized sets of Gs did not overlap for E1, this eigentensor described significantly more

variation among the observed G than by chance. (b) “Heat map” displaying the pattern of

greatest variation among G matrices as captured by E1 (darker shading indicates more variation

among G matrices). As expected, variability among G matrices is more intense in the lower-right

corner of the matrix. (c) Across populations, the additive-genetic variance (VA) in the direction of

the first eigenvector of E1 (i.e., e11).
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