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S1. Stranding data

Figure S1. Number of strandings by year between 27–42◦N. Data were obtained from the
MMHSRP National Database (accessed 23 May and 30 June 2014). Low numbers prior to
1996 suggest low reporting rates and so are discarded in all subsequent analysis. Similarly the
spike in strandings in 2013 reflects the beginning of the UME, and so we do not include this
year when considering ‘non-epidemic’ years.

Figure S2. Number of strandings by season and latitude degree from 1996–2012. Data were
obtained from the MMHSRP National Database (accessed 23 May and 30 June 2014). Sep-
tember, October and November are classed as fall months; December, January and February
as winter; March, April and May as spring; and June, July and August as summer.
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Figure S3. Number of strandings by season and latitude degree for the UME period (June
2013–2014). Data were obtained from the MMHSRP National Database (accessed 23 May
and 30 June 2014). September, October and November are classed as fall months; December,
January and February as winter; March, April and May as spring; and June, July and August
as summer.

S2. Data preparation

S2.1. Prediction of background stranding rates. Annual stranding rates in non-epidemic

years (1996–2012) were predicted using a Poisson generalized linear model (GLM). Separate

models for summer (June–August), fall (September–November), winter (December–February)

and spring (March–May) were used to allow for seasonal variability in stranding patterns (Figure

S2). Each model was defined by

θs = exp (b0 + b1L), Ns ∼ Pois(rs)

where L is a vector representing latitude degrees, Ns a vector for the total number of strandings

at each latitude degree in a given season, s, and rs a vector for the stranding rate at each

latitude during season s.

The resulting predictions for the number of background strandings in each season and latitude

degree (in the absence of a disease outbreak) sufficiently capture the observed seasonal patterns

in the background stranding data, with spring and summer displaying higher stranding rates

in addition to a stronger multimodal pattern in the distribution of rates across latitude points

compared to fall and winter (Figure S4 and Table S1). We therefore use these estimates to

separate likely background cases in the 2013 – 2014 UME data from cases that are likely due to

disease (Section S2.2), and to estimate the seasonal distribution of the total population along

the coast (Section S2.3).
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Figure S4. Poisson GLM fit of background strandings by season and latitude for non-epidemic
years (1996–2012). Points represent observed number of strandings within each latitude band,
for each year and season; coloured lines represent predicted annual stranding rates for each
season and latitude band; and shaded regions are the corresponding 95% confidence intervals.

S2.2. Removing background strandings from the UME dataset. As discussed in Section

2.2, the background cases must be removed from the UME dataset in order to restrict analysis

to strandings due to DMV infection. Since we only consider the first year of UME data in our

analysis, the number of recorded UME strandings in each season and latitude is analogous to

the annual UME stranding rate. These UME stranding rates, in addition to the background

stranding rates calculated previously, are used to determine the proportion of cases that should

be removed from the UME dataset.

Let rs,l and us,l be the rate of background and UME strandings in season s and latitude

l, respectively. Note that since the UME data includes background strandings, rs,l < us,l.

Assuming the stranding events are independent, the probability that a randomly selected case

from season s and latitude l in the UME dataset is a background stranding follows a binomial

distribution with ‘success’ probability rs,l/us,l. The successful outcomes are then removed from

the UME dataset. Figure 1A compares the raw dataset to the resulting epidemic dataset

once these background cases have been removed. The pattern shown here is preserved across

multiple simulations of the above procedure and we therefore assume that our approximation

of the epidemic data is a fair representation of the underlying epidemic process.

S2.3. Seasonal distribution of population density. If Ns is the the total number of strand-

ings (across all latitude degrees) during a particular season s, and Ns,l is the number of strand-

ings at latitude l during that given season, then the proportion of strandings in season s that

occur at latitude l is Ns,l/Ns. The number of individuals that occupy latitude l during season s

can then be estimated by multiplying Ns,l/Ns by the total population size (26,317) of the four

coastal stocks (NMCS, SMCS, SCGCS and NFCS). Since it is assumed that estuarine dolphins

do not contribute significantly to the overall UME strandings, their stock sizes are not included

in the total population estimates or any subsequent analysis.
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Table S1. Summary of Poisson GLM predictions for annual background stranding rates
in non-epidemic years (1996–2012). Coefficient estimates (and standard errors) are given
for each season and latitude.

Strandings:

Summer Fall Winter Spring

Latitude 28 1.762∗∗∗ 1.371∗∗∗ 1.065∗∗∗ 1.674∗∗∗

(0.160) (0.198) (0.148) (0.174)

Latitude 29 0.214 −0.000 0.320∗ 0.869∗∗∗

(0.198) (0.250) (0.168) (0.191)

Latitude 30 0.614∗∗∗ 0.446∗∗ 0.422∗∗ 1.278∗∗∗

(0.183) (0.226) (0.165) (0.181)

Latitude 31 −0.091 −0.693∗∗ −0.422∗∗ 1.028∗∗∗

(0.213) (0.306) (0.203) (0.187)

Latitude 32 1.542∗∗∗ 1.313∗∗∗ 0.389∗∗ 1.800∗∗∗

(0.162) (0.199) (0.166) (0.173)

Latitude 33 −0.044 1.045∗∗∗ −0.050 0.344
(0.211) (0.206) (0.183) (0.209)

Latitude 34 −0.000 0.953∗∗∗ 0.422∗∗ 1.889∗∗∗

(0.209) (0.208) (0.165) (0.172)

Latitude 35 0.796∗∗∗ 1.216∗∗∗ 0.749∗∗∗ 2.168∗∗∗

(0.178) (0.201) (0.155) (0.169)

Latitude 36 1.858∗∗∗ 1.640∗∗∗ −0.473∗∗ 1.594∗∗∗

(0.159) (0.193) (0.207) (0.176)

Latitude 37 1.560∗∗∗ 0.523∗∗ −1.626∗∗∗ 1.454∗∗∗

(0.162) (0.223) (0.316) (0.178)

Latitude 38 1.444∗∗∗ −0.065 −2.501∗∗∗ 0.541∗∗∗

(0.164) (0.254) (0.465) (0.201)

Latitude 39 0.890∗∗∗ −0.375 −2.725∗∗∗ −0.137
(0.175) (0.277) (0.516) (0.235)

Latitude 40 −0.000 −0.758∗∗ −2.319∗∗∗ −0.668∗∗

(0.209) (0.313) (0.428) (0.275)

Latitude 41 −1.264∗∗∗ −1.674∗∗∗ −3.012∗∗∗ −1.266∗∗∗

(0.314) (0.445) (0.591) (0.341)

Constant 0.995∗∗∗ 0.633∗∗∗ 1.278∗∗∗ 0.830∗∗∗

(0.147) (0.177) (0.128) (0.160)

Note: ∗p <0.1; ∗∗p <0.05; ∗∗∗p <0.01
5



The method described above gives a point estimate for the number of individuals at each

latitude that remains constant throughout a given season. In reality, however, the number of

individuals is likely to fluctuate continuously throughout the season. Since we lack data on

these fluctuations, we incorporate them by linearly interpolating around our point estimates.

For example, if DF
l , D

W
l are the point estimates for the population size at latitude l in fall and

winter, respectively, then for each day (t = 1, 2, ..., 91) of fall, the number of individuals at l is

given by

Dt,l = DF
l +

(t− 1)

91
(DW

l −DF
l ).

This procedure is repeated for each season to give a smoother temporal function for the pop-

ulation density at each latitude degree (Figure S5). These estimates then provide the model

inputs for the population size at each day and latitude degree, Dt,l, throughout the epidemic.

Figure S5. Estimate of the spatiotemporal distribution of coastal bottlenose dolphins in the
NW Atlantic. The total population size is assumed to be 26,317, comprising the NMCS,
SMCS, SCGCS and NFCS. Estimates are obtained by assuming the annual stranding rates at
any latitude in non-epidemic years is proportional to the total number of individuals at that
latitude at any given time (see Sections 2.2 and S2.3 for further details).

6



S3. Log-likelihood function

As presented in Section 2.3.1, the probability of observing N cases in time t ∈ [0, T ] and

space l ∈ [L1, L2] is defined as [1]

Pr(N) =
ΛNe−Λ

N !
, where Λ =

∫ T

0

∫ L2

L1

λ(t, l)dtdl.

The probability of observing case i is λ(ti, li)/Λ [1], and the probability of observing an ordered

sample of cases 1, 2, ..., N is

Pr(sample) = N !
N∏
i=1

λ(ti, li)

Λ

=
N !

ΛN

N∏
i=1

λ(ti, li).

It follows that the likelihood of observing the whole epidemic dataset is given by [1]

Pr(N)× Pr(sample) =
ΛNe−Λ

N !
× N !

ΛN

N∏
i=1

λ(ti, li)

= e−Λ ×
N∏
i=1

λ(ti, li),

and therefore the log-likelihood is [1, 2]

L = −Λ +
N∑
i=1

log(λ(ti, li))

= −
∫ T

0

∫ L2

L1

λ(t, l)dtdl +

N∑
i=1

log(λ(ti, li)).
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S4. Information criterion

Typical Akaike information criterion (AIC) values are calculated as

AIC = 2k − 2 log(p(y|θ̂)),

where y represents the observed data, k is the number of estimated parameters in the model,

and θ̂ is the maximum likelihood estimate of the model parameters θ [3, 4]. Here, the maximum

log-likelihood value, log(p(y|θ̂)), is approximated by taking the median value of the posterior

log-likelihood distribution.

Watanabe-Akaike information criterion (WAIC) values are calculated as

WAIC = 2
n∑

i=1

varP

(
log(p(yi|θ))

)
− 2

n∑
i=1

log
(∫

p(yi|θ)pP (θ)dθ
)
,

where pP (θ) represents the posterior parameter distribution [4, 5]. The first term sums the

posterior variance of the log-likelihood for each observed data point, yi, and approximates the

number of fitted parameters, and the second term provides a measure of the pointwise log-

likelihood [4].

S5. Frequency vs. density-dependent model predictions

Figure S6. Simulated predictions of the density-dependent model. Cases were simulated across
latitudes, l, and time, t, as Pois(λl,t) using the hazard function, λl,t, calculated during param-
eter estimation. Lines represent median values from 2000 simulations in RStan, shaded regions
represent the 2.5th–97.5th quantile range and points represent actual data. Latitude bands are
distinguished by colour.

8



Figure S7. Simulated predictions of the frequency-dependent model. Cases were simulated
across latitudes, l, and time, t, as Pois(λl,t) using the hazard function, λl,t, calculated during
parameter estimation. Lines represent median values from 2000 simulations in RStan, shaded
regions represent the 2.5th–97.5th quantile range and points represent actual data. Latitude
bands are distinguished by colour.

S6. Binomial chain model with susceptible depletion

A binomial chain version of the self-exciting process was developed to investigate the im-

portance of susceptible depletion to the overall epidemic dynamics. In this model the hazard

function is defined as

λ(t, l|Ht) = β
∑
i,ti<t

g(t− ti)f(l − li)

for density-dependent transmission, and

λ(t, l|Ht) =
β

Dt,l

∑
i,ti<t

g(t− ti)f(l − li)

for frequency-dependent transmission. The number of susceptible individuals at time t and

latitude l, Xt,l, is calculated by subtracting the cumulative number of strandings at l from the

total population size, and then the number of new cases is drawn from a binomial distribution

with Xt,l trials and probability of success given by p = 1−exp(−λt,l). The effective reproduction

number is R = βXt,l for density-dependent transmission and R = βXt,l/Dt,l for frequency-

dependent transmission, and the functions f and g, and all other parameters, are as described

in the main body of the text. Parameter estimates and information criterion values are given

in Table S2, and model fits are shown in Figures S8 and S9.
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Table S2. Model comparisons. Values indicate median parameter estimates and infor-
mation criterion (2.5th–97.5th quantiles) from 2000 RStan simulations (not including
warm-up sampling) of each model with susceptible depletion.

Model Density-dependent Frequency-dependent
R min: 0.0071 (0.0067–0.0076)* min: 0.0877 (0.0871–0.0884)*

max: 2.87 (2.70–3.05) max: 0.99 (0.97–1.00)
σ 1.78 (1.80–1.85) 1.76 (1.75–1.78)

α 0.14 (0.11–0.18) 0.17 (0.14–0.21)

Number of 3 3
parameters
Approximate 6255.78 6014.03
AIC
WAIC 10982.09 12255.60

*Reproductive values are calculated using the inferred posterior distribution of β (results not
shown). The minimum value refers to R at the lowest estimate of Xt,l (Xt,l/Dt,l) in the
density-dependent (frequency-dependent) case, for any one latitude degree and time point, and
the maximum value refers to R at the largest estimate.

Figure S8. Simulated predictions of the density-dependent susceptible depletion model. Cases
were simulated across latitudes, l, and time, t, as Bi(p = 1 − e−λt,l , Xt,l) using the hazard
function, λl,t, calculated during parameter estimation. Lines represent median values from
2000 simulations in RStan, shaded regions represent the 2.5th–97.5th quantile range and points
represent actual data. Latitude bands are distinguished by colour.
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Figure S9. Simulated predictions of the frequency-dependent susceptible depletion model.
Cases were simulated across latitudes, l, and time, t, as Bi(p = 1 − e−λt,l , Xt,l) using the
hazard function, λl,t, calculated during parameter estimation. Lines represent median values
from 2000 simulations in RStan, shaded regions represent the 2.5th–97.5th quantile range and
points represent actual data. Latitude bands are distinguished by colour.

S7. Transmission networks

S7.1. Generating the networks. As discussed in Section 2.4, transmission networks were re-

constructed using the distribution of parameter estimates from the best-fitting model. Stranded

individuals were connected with the source of their stranding (i.e. the previously stranded in-

dividual that most likely caused their infection) according to the following steps:

(1) One sample was taken from the joint posterior parameter distribution i.e. a value was

drawn for each estimated parameter (the baseline and additional transmission rates, and

the temporal and spatial decay rates). This sample was then used to reconstruct the

hazard function (according to Equation 1), and the current contribution of each infected

individual to the hazard, across all space and time points.

(2) For each individual i (that stranded at latitude li and time ti):

i) The current contributions at li and ti of each previously stranded individual (i.e.

each potential source) were determined from the previous step.

ii) These contributions were divided by the total hazard function at li and ti to

determine the relative contribution of each potential source. A vector, C, representing

the cumulative sum of these contributions was then created.

iii) Finally, the source was chosen using random number generation: a random

number between 0 and 1, r, was drawn from a uniform distribution and the individual

corresponding to the first element in C greater than r was identified as the source of

infection.
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(3) Step 2 was repeated for each stranded individual to generate the entire network.

A different transmission network was generated for each random sample of the estimated param-

eter distributions; 100 samples were taken in total. These transmission networks then served as

a tool for visualizing and interpreting the results of the model inference.

S7.2. Visualization.

Figure S10. Example of one of the directed transmission networks. Each arrow represents
the direction from the source of infection to the resulting stranding. Colours distinguish the
different latitudes that generated each transmission event.
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