

Supplementary Figure 1. 2D-DIGE gel showing *P. gingivalis* protein differences in untreated and sapienic acid-treated samples. Red spots indicate upregulation of proteins in treated samples and green spots indicate downregulation of proteins, relative to the control sample. Yellow spots indicate colocalization, where the same proteins were present in both samples. This previously published figure was included with permission from the Nature Publishing Group (Fischer, et al., Int J Oral Sci 5(3):130-140).

**Supplemental Figure 2.** Overview of the current state of knowledge of *P. gingivalis* metabolism and transport. This overview of the current state of knowledge of *P. gingivalis* metabolism and transport, published by Dr. Nelson, et. al (Journal of Bacteriology, 2003; 185:5591-5601)<sup>1</sup> has been reprinted with permission from ASM journals. We have annotated it (pink words and arrows) to show where the metabolic pathways involved with sapienic acid treatment of *P. gingivalis* fit within known *P. gingivalis* metabolic data (Nelson KE, et al. 2003. J Bacterol 185:5591-5601).



**Supplemental Table 1.** Complete list of all proteins differentially expressed and fold changes with sapienic acid treatment (relative to untreated controls).

| Spot #                                                             | Locus         | Gene        | Blast result (top  | Cellular role, Pathway, Function                                  | Fold   |
|--------------------------------------------------------------------|---------------|-------------|--------------------|-------------------------------------------------------------------|--------|
| T                                                                  |               |             | nit)               |                                                                   | Change |
| I ranslational activities                                          |               |             |                    |                                                                   |        |
| 50                                                                 | PG0314        | rplU        | S1 30S ribosomal   | Translation – structural constituent of ribosome; binds mRNA      | +1.9   |
|                                                                    |               |             | protein            | and facilitates recognition of translation initiation point       |        |
| 42                                                                 | PG1297        | rpsA        | L21 50S            | Translation – ribonucleoprotein; binds to 23S rRNA                | +2.6   |
|                                                                    |               |             | ribosomal protein  |                                                                   |        |
| Transport sy                                                       | /stems and as | sociated su | Irface receptors   |                                                                   |        |
| 43                                                                 | PG0780        | exbD        | TonB complex       | Provides energy for transport of heme/other large molecules       | +3.6   |
|                                                                    |               |             | protein            | into bacterial cells; integral membrane protein                   |        |
| 13                                                                 | CAA68897      | tlr         | TonB-linked        | Outer membrane receptor; binds heme/other large molecules         | -3.0   |
|                                                                    |               |             | adhesion/receptor  | for transport into bacterial cells; transport depends upon        |        |
|                                                                    |               |             |                    | energy supplied by the TonB complex                               |        |
| 10                                                                 | PG0185        | ragA        | TonB-linked        | Temperature-regulated receptor that binds heme/other large        |        |
|                                                                    |               | •           | adhesion/receptor  | molecules for transport into bacterial cells; transport depends   | -9.6   |
|                                                                    |               |             |                    | upon energy supplied by the TonB complex                          |        |
| 11                                                                 | PG0185        | ragA        | TonB-linked        | Temperature-regulated receptor that binds heme/other large        |        |
|                                                                    |               | -           | adhesion/receptor  | molecules for transport into bacterial cells; transport depends   | -6.6   |
|                                                                    |               |             |                    | upon energy supplied by the TonB complex                          |        |
| 20                                                                 | PG0185        | ragA        | TonB-linked        | Temperature-regulated receptor that binds heme/other large        |        |
|                                                                    |               |             | adhesion/receptor  | molecules for transport into bacterial cells; transport depends   | +2.9   |
|                                                                    |               |             |                    | upon energy supplied by the TonB complex                          |        |
| 38                                                                 | PG0185        | ragA        | TonB-linked        | Temperature-regulated receptor that binds heme/other large        |        |
|                                                                    |               |             | adhesion/receptor  | molecules for transport into bacterial cells; transport depends   | +2.1   |
|                                                                    |               |             |                    | upon energy supplied by the TonB complex                          |        |
| 46                                                                 | PG0185        | ragA        | TonB-linked        | Temperature-regulated receptor that binds heme/other large        | +1.6   |
|                                                                    |               |             | adhesion/receptor  | molecules for transport into bacterial cells; transport depends   |        |
|                                                                    |               |             |                    | upon energy supplied by the TonB complex                          |        |
| Central metabolism: glycolysis, gluconeogenesis, and the TCA cycle |               |             |                    |                                                                   |        |
| 39                                                                 | PG0548        | porG        | Pyruvate           | Predicted to function in the pyruvate pathway to acetate;         | +1.7   |
|                                                                    |               |             | ferredoxin/flavodo | electron carrier activity; iron binding; cofactor binding; cation |        |
|                                                                    |               |             | xin                | binding                                                           |        |

| 23         | PG1755         | fba        | Fructose-1,6-<br>bisphosphate<br>aldolase                 | Glycolysis, gluconeogenesis, TCA cycle; amino acid metabolic processes (anabolic and catabolic)                                                                                               | +2.4 |
|------------|----------------|------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 29         | PG2124         | gapA       | Glyceraldehyde<br>3-phosphate<br>dehydrogenase;<br>type 1 | Glycolysis; nucleotide binding; phosphorylating activity                                                                                                                                      | +2.5 |
| 32         | PG2124         | gapA       | Glyceraldehyde<br>3-phosphate<br>dehydrogenase;<br>type 1 | Glycolysis; nucleotide binding; phosphorylating activity                                                                                                                                      | +2.3 |
| 34         | PG1809         |            | 2-oxoglutarate<br>oxidoreductase<br>subunit gamma         | Oxidoreductase activity; catalytic activity; microbial<br>metabolism in diverse environments; TCA cycle; metabolic<br>pathways; carbon metabolism                                             | +2.0 |
| 44         | PGN_1117       |            | Acetyl-CoA<br>synthetase                                  | Cofactor binding                                                                                                                                                                              | +3.2 |
| 21         | PG1812         |            | 2-ketoisovalerate<br>ferredoxin<br>oxidoreductase         | TCA cycle, metabolic pathways, microbial metabolism in diverse environments; carbon metabolism                                                                                                | +1.8 |
| Metabolism | of peptides/an | nino acids |                                                           |                                                                                                                                                                                               |      |
| 14         | PG1232         | gdh        | NAD-dependent<br>glutamate<br>dehydrogenase               | Primary pathway: metabolism of glutamate and aspartate for<br>energy production; reverse (anabolic reaction is also possible<br>under certain conditions – leading to glutamate biosynthesis) | +2.3 |
| 16         | PG1232         | gdh        | NAD-dependent<br>glutamate<br>dehydrogenase               | Primary pathway: metabolism of glutamate and aspartate for<br>energy production; reverse (anabolic reaction is also possible<br>under certain conditions – leading to glutamate biosynthesis) | +3.3 |
| 25         | PG1232         | gdh        | NAD-dependent<br>glutamate<br>dehydrogenase               | Primary pathway: metabolism of glutamate and aspartate for<br>energy production; reverse (anabolic reaction is also possible<br>under certain conditions – leading to glutamate biosynthesis) | +2.3 |
| 26         | PG1232         | gdh        | NAD-dependent<br>glutamate<br>dehydrogenase               | Primary pathway: metabolism of glutamate and aspartate for<br>energy production; reverse (anabolic reaction is also possible<br>under certain conditions – leading to glutamate biosynthesis) | +2.3 |
|            | PG1190         | hprA       | Glycerate<br>dehydrogenase                                | Biosynthesis of secondary metabolites; metabolism of amino acids; microbial metabolism in diverse environments                                                                                |      |
| 24         | PG1278         | serC       | Phosphoserine<br>aminotransferase                         | Microbial metabolism in diverse environments; methane metabolism; amino acid metabolism/biosynthesis                                                                                          | +1.9 |

| 36                                | PG0343   | megL                  | Methionine<br>gamma-lyase                                            | Cofactor-binding enzyme involved in multiple amino acid<br>metabolic pathways; catalyzes the committed step of<br>methionine biosynthesis                                                                                                                  | -3.3  |
|-----------------------------------|----------|-----------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Lipid biosynthesis and metabolism |          |                       |                                                                      |                                                                                                                                                                                                                                                            |       |
| 6                                 | PG1764   | fabF                  | 3-oxoacyl-(acyl-<br>carrier protein)<br>synthase II                  | Thermal regulation of membrane fatty acid composition;<br>elongates fatty acid chains during synthesis                                                                                                                                                     | +2.4  |
| 7                                 | PG1764   | fabF                  | 3-oxoacyl-(acyl-<br>carrier protein)<br>synthase II                  | Thermal regulation of membrane fatty acid composition;<br>elongates fatty acid chains during synthesis                                                                                                                                                     | +2.2  |
| 12                                | PG1764   | fabF                  | 3-oxoacyl-(acyl-<br>carrier protein)<br>synthase II                  | Thermal regulation of membrane fatty acid composition;<br>elongates fatty acid chains during synthesis                                                                                                                                                     | -20.6 |
| 8                                 | PG2124   | fabH                  | 3-oxoacyl-(acyl-<br>carrier protein)<br>synthase III                 | ACP synthase initiates and controls the rate of fatty acid<br>biosynthesis; determines whether fatty acids are<br>branched/straight-chain; only reversible step in the fatty acid<br>elongation process                                                    | +1.9  |
| Respiration                       |          |                       |                                                                      |                                                                                                                                                                                                                                                            |       |
| 27                                | PG1417   | fumB                  | Fumarate<br>hydratase, Class<br>1                                    | Fumarate respiratory chain: Reversibly catalyzes the hydration/dehydration of fumarate to malate                                                                                                                                                           | +1.9  |
| 35                                | PG1803   | atpA                  | V-type ATP<br>synthase, subunit<br>A                                 | Fumarate respiratory chain: V-type ATP synthase function –<br>transport Na <sup>+</sup> or H <sup>+</sup> ions into the bacterial cells in an energy-<br>dependent fashion; can also reverse direction to export Na <sup>+</sup><br>out of bacterial cells | +1.7  |
| 4                                 | PG1609   | mmdA                  | Methylmalonyl-<br>CoA                                                | Fumarate respiratory chain: helps generate transmembrane<br>Na <sup>+</sup> gradient; helps regulate cellular homeostasis by<br>transport of H <sup>+</sup> and Na <sup>+</sup> across the membrane                                                        | +2.1  |
| 19                                | PGN_0503 | mmdC                  | Biotin carboxyl carrier protein                                      | Fumarate respiratory chain: helps generate transmembrane<br>Na <sup>+</sup> gradient; helps regulate cellular homeostasis by<br>transport of H <sup>+</sup> and Na <sup>+</sup> across the membrane                                                        | +2.1  |
| 30<br>Iron acquisi                | PG0304   | rnfC<br>essing/Virule | RnfABCDGE type<br>electron transport<br>complex subunit<br>C<br>ence | Fumarate respiratory chain: Part of Complex I, helps transport electrons to a nitrogenase via ferredoxin                                                                                                                                                   | +2.4  |

| 28        | PG0669   | fetB | Heme-binding      | Heme binding protein involved in the anaerobic cobalamin      | +1.8  |
|-----------|----------|------|-------------------|---------------------------------------------------------------|-------|
|           |          |      | protein FetB      | biosynthetic process                                          |       |
| 9         | PGN_1970 | rgpA | Arginine-specific | Acquire and degrade heme-containing molecules for             | +2.3  |
|           |          |      | cysteine          | acquisition of heme/peptides needed for growth; virulence     |       |
|           |          |      | proteinase RpgA   | factor                                                        |       |
| 40        | PGN_1970 | rgpA | Arginine-specific | Acquire and degrade heme-containing molecules for             | +3.2  |
|           |          |      | cysteine          | acquisition of heme/peptides needed for growth; virulence     |       |
|           |          |      | proteinase RpgA   | factor                                                        |       |
| 1         | PG0506   | rpgB | Arginine-specific | Acquire and degrade heme-containing molecules for             | +1.7  |
|           |          |      | cysteine          | acquisition of heme/peptides needed for growth; virulence     |       |
|           |          |      | proteinase RpgB   | factor                                                        |       |
| 22        | PG0506   | rpgB | Arginine-specific | Acquire and degrade heme-containing molecules for             | +2.2  |
|           |          |      | cysteine          | acquisition of heme/peptides needed for growth; virulence     |       |
|           |          |      | proteinase RpgB   | factor                                                        |       |
| 41        | PGN_1728 | kgp  | Lysine-specific   | Acquire and degrade heme-containing molecules for             | +1.7  |
|           |          |      | cysteine          | acquisition of heme/peptides needed for growth; virulence     |       |
|           |          |      | proteinase Kgp    | factor                                                        |       |
| 2         | PG0181   | fimA | Fimbrial protein, | Adhesion to host tissues and salivary molecules               | +3.9  |
|           |          |      | type II           |                                                               |       |
| 31        | PG1844   | hagD | Hemagglutinin D   | Adhesion for colonization and nutritional purposes            | -2.9  |
| 33        | PG1844   | hagD | Hemagglutinin D   | Adhesion for colonization and nutritional purposes            | -3.5  |
| 15        | PG2024   | hagE | Hemagglutinin E   | Adhesion for colonization and nutritional purposes            | -3.2  |
| 18        | PG0443   |      | Hemagglutinin-    |                                                               | +2.0  |
|           |          |      | like protein      |                                                               |       |
| 17        | PG1385   | tprA | Tpr domain        | Tetratricopeptide repeat-containing protein                   | -13.8 |
|           |          |      | protein           |                                                               |       |
| Stress    |          |      |                   |                                                               |       |
| 45        | PG1545   | sod  | Superoxide        | Confers tolerance to oxidative stress                         | +1.8  |
|           |          |      | dismutase         |                                                               |       |
| Unknown f | unction  |      |                   |                                                               |       |
| 49        | PGN_1023 | olpA | Acid phosphatase  | Acid phosphatase (Class B); 5' nucleotidase lipoprotein 3(P4) | +1.8  |
|           |          |      | OlpA              |                                                               |       |
| 5         | PG1486   | traA | Putative          |                                                               | +2.2  |
|           |          |      | conjugate         |                                                               |       |
|           |          |      | transposon        |                                                               |       |
|           |          |      | protein TraA      |                                                               |       |

| 37 | PG1486   | traA | Putative     | +1.9 |
|----|----------|------|--------------|------|
|    |          |      | conjugate    |      |
|    |          |      | transposon   |      |
|    |          |      | protein TraA |      |
| 47 | PGN_1950 |      | Hypothetical | +1.9 |
|    |          |      | protein      |      |
| 48 | PG1684   |      | Hypothetical | +2.1 |
|    |          |      | protein      |      |