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SUPPORTING INFORMATION

Text S2. WHY IS COHERENT ROTATIONAL MOTION SEEN FOR A SELF-

PROPELLED ELASTIC SOLID WHEN THE POLARIZATION VECTOR FOR A

CELL HAS A TENDENCY TO ALIGN WITH THE VELOCITY OF THE CELL?

The equation of evolution for cell position and polarization, respectively, for the current

system are (also see main text):

dri
dt

= v0p̂i + µFi,

dp̂i

dt
= ξ(p̂i × v̂i.ez)p̂⊥ (S1)

As per this evolution rule, the polarization of the cell has a tendency to align with its velocity.

Additionally, the polarization direction also feeds into the velocity of the cell and tends to

modify its speed and direction. Now, to understand, at least semi-analytically, the origin

of the rotational motion under confinement for an elastic solid formed of self-propelling

particles as given above, we use the following procedure motivated from the arguments in

Refs. [1, 2]. We extend this reasoning to argue that even if the cells can exchange their

neighbors, coherent rotational motion of the cell sheet is the most likely outcome.

The elastic system of springs under circular confinement is free to undergo rigid body

rotation about its center. Its translational degrees of freedom are, however, curtailed due to

the confinement. Using ideas from structural mechanics, let us denote the stiffness matrix of

the system in its rest (or stress-free) conformation as [K] [3]. The matrix [K], is symmetric,

positive semi-definite, and has dimensions of 2Ncells×2Ncells. If the displacement of the cells

(nodes) from their rest position, in terms of column matrix of dimension 2Ncells × 1, is {u},

then the equation of motion for the system in the complete matrix form can be written as:

d{u}
dt

= v0{p} − µ[K]{u}. (S2)

Additionally, in this case, the polarization of each cell prefers to align with its velocity

(see Eq. S1). Since the stiffness matrix [K] is symmetric and positive semi-definite, it has

2Ncells orthogonal eigenvectors {φi} and corresponding non-negative eigenvalues λi. The

only zero eigenvalue is the one corresponding to the rigid body rotation mode {φ0}; all

other eigenvalues are positive. The displacement {u} and velocity {u̇} can then re-written
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in the form of eigen-modes as

{u} =

2Ncells−1∑
i=0

αi{φi}, and (S3)

{u̇} =

2Ncells−1∑
i=0

α̇i{φi}, (S4)

where {p} is the polarization of all the cells, combined in the form of a column vector of size

2Ncells × 1. Expressing Eq. S2 using the eigenmodes, we get the following set of equations

in terms of eigenmode amplitudes

dαj

dt
= v0〈φj〉{p} − µλjαj, (S5)

where 〈φi〉 is the eigenvector written in row format. This equation can be re-written as:

dαj

dt
= v0βj − µλjαj, (S6)

where βj = 〈φj〉{p}. It seems safe to presume that for a certain time interval τ ∼ 1/ξ, where

ξ is the response rate for polarization (see Eq. S1), the polarization remains almost constant.

In this case Eq. S5 can be solved to provide us the following solution for the amplitude αj

of any mode j.

αj =
v0βj
λjµ

[1− exp(−µλjt)], (S7)

and the corresponding velocity of the mode is given by

α̇j = v0βj exp(−µλjt), (S8)

where we have assumed zero initial conditions for αj. It is very clear from Eq. S8 that modes

with larger λ, i.e., greater stiffness or small wavelength, would decay faster as compared

with the modes with smaller λ. The smallest λ possible for the current system is λ0 = 0,

corresponding to the mode that involves rigid body rotation of the tissue. This implies that

the amplitude α0 corresponding to pure rotation, and more importantly the angular speed

α̇0 (v0β0) increases with time. The motility parameter µ sets the rate at which the energy

is dissipated from mode j 6= 0, whereas the polarization orientation constant ξ sets the rate

at which the energy is pumped into each mode (in the form of βj).

Let us first look at the case with medium value of ξ ≈ 1, i.e., ξ ≈ µλ1. The polarization

column vector {p} for the system can also be written in terms of eigen-modes as follows:

{p} =

2Ncells−1∑
i=0

βi{φi}, (S9)
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As can be seen from Eq. S8, for the case of ξ ≈ µλ1, the velocity component corresponding

to φ0 increases, whereas the components corresponding to other modes essentially decay to

zero—in the very least they do not grow as fast as α0. It may be noted that, since, the

polarization vector for each cell has unit magnitude, the consolidated column vector will

additionally satisfy

〈p〉{p} =

2Ncells−1∑
i=0

β2
i = Ncells. (S10)

Hence, the fact that α̇0 is the dominant mode will ensure that β0 will increase to some

bounded steady state value that would depend on the polarization orientation parameter ξ,

since, as per our polarization rule the polarization of a cell tends to align with its velocity. It

may, however, be noted that since the polarization of each cell is a unit vector, in addition to

a dominant β0, some other βi components would also remain non-zero. This means that, as

per Eq. S6, some energy will keep getting pumped in a few other modes i. Nonetheless, α̇0

will be the only component that would increase steadily as per Eq. S8—other components

α̇i would decay.

We now examine two extreme limits of polarization orientation constant ξ. When ξ is

very small(ξ << 1), the response of p̂ to velocity v is slow. As a result, the polarizations of

the cells would lag behind in their bid for orienting with the velocity (see Fig. 2(a), (b), (d)

of the main paper), resulting in a smaller steady state value for β0. However, as described

above, even a small component β0 of the polarization field would be sufficient to sustain

steady α̇0, and hence rotation—the other modes α̇j would not be sustained despite having

non-zero βj values in some of the modes. The angular velocity of the tissue (ω ≈ v0β0)

would be, of course, small as is seen in Fig. 2(c). In the other extreme limit when ξ � 1, the

rate at which energy is pumped in the modes is faster than the rate at which it is typically

dissipated for the jth mode (∼ µλj). In this case, we can see (Video S3), a perfect rotation of

the tissue about the center is not obtained—the centre of rotation keeps changing constantly,

confirming that {φ0} is not the only mode that is invoked. Indeed, as can be seen from Video

S3, a few radial modes are also excited, and are reminiscent of such movements observed

in Ref. [4]. Our calculation predicts that, if the cells are highly cohesive, in which case

their polarization can evolve faster [5] (ξ � 1), we are expected to see these non-rotational,

radial, modes. Similarly, since the stiffness of the long wavelength modes (λj) is inversely

proportional to the system size (e.g., in 1−D, λj ∼ j2/L), we can see such modes for larger
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system even if ξ ≈ 1. In fact, such movements are also reported in the experiments of Deforet

et al [4] and the simulations of Ref. [6] for larger system sizes—the authors attribute these

modes to the lack of the strength of persistent force (v0/µ in our case). Our calculation,

however, gives a clearer understanding for the origin of these movements.

The previous argument hinged on the tissue having a well defined stiffness matrix [K],

which in turn depends on having a system of cells with fixed connectivity. However, in our

model we allow for the cells to change their neighbors and release internal stress. If that

happens, the stiffness matrix of the tissue gets modified to [K ′], depending on the rate at

which the cells change their neighbors. As a result, the eigenvectors of the system now get

modified to {φ′i}. The only eigenvector that is, however, most certainly common to the two

systems is the one corresponding to the rigid body rotation {φ0} = {φ′0}. Consequently,

though there will be perturbations to βi in the form of new β′i, the steady pumping of energy

to the rotational mode will continue. The system is, hence, expected to achieve rotational

coherence even if the cells (nodes) are allowed to change neighbors. Though this argument is

not rigorous, it is consistent with the results of our simulations, and indeed seems plausible.

There are a couple of things that we did not account in the above derivation: (i) pre-

stress in the system due to crowding, and (ii) finite rotation effects. The pre-stress effect

is too complex to be accounted for in this simple derivation—we leave it for future work.

The effect of finite rotation seems to be a secondary effect. We see (Video S1) that when

the cell sheet, by and large, behave elastically the coherent rotation is initiated before any

finite rotation actually happens in the system. As a result, we think that the finite rotation

effect is secondary, and if required can be incorporated by moving to a co-rotational frame

of reference (as is done in section deriving the analytical solution for elastic solids in main

text)—it should not affect essential mechanics of the problem.
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