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SUPPORTING INFORMATION

Text S3. EXACT STEADY STATE SOLUTION WHEN THE TISSUE IS A VIS-

COUS FLUID

Since, in our model, the cells are allowed to change neighbours and relax the internal

stress, then depending on the internal strain/stress, the tissue can indeed behave more like

a fluid than like an elastic solid as described in the main paper. We hence, present a simple

semi-analytical case of a Newtonian fluid to demonstrate coherent rotation for a fluidised

tissue, and resort to the simulation results to make any contact with experiments. A more

realistic, description of the tissue as a complex fluid is beyond the scope of this paper, due

to the difficulty in both, using an appropriate rheological model, as well as in obtaining

analytical solutions.

In this case, we seek to obtain a radially symmetric solution such that both the polar-

isation p̂ and velocities are aligned along the tangential direction (i.e., vr = 0). To do so,

we write a very simple form for the equation of equilibrium as is given below. The equation

for polarisation evolution remains the same as before (Eq. S1), and if we can find a such a

solution, then we have found one possible steady state solution.

The constitutive equation for the epithelial sheet that is modelled as a viscous fluid is

written as

σ = η
(
∇v + (∇v)T − (∇ · v)1

)
+ ηv(∇ · v)1, (S11)

where η is the 2 −D shear viscosity, and ηv = 3η in 2−D [1]. The equation of equilibrium

in radial direction will be trivially reduced to zero for the solution that we are looking for.

In the θ direction, the equation for tangential velocity vθ will become,
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µs
(v0 − vθ) = 0, (S12)

with the boundary conditions

vθ(0) = 0, (symmetry)
∂

∂r

(vθ
r

)
R

= 0 (shear traction at boundary). (S13)

This equation seems to have a complicated closed-form solution in terms of Bessel and

Hypergeometric functions. However, we can solve this problem numerically. To do that we
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will first non-dimensionalize the equation: all velocities are expressed in terms of v0 and all

lengths in terms of R. The equation then simplifies to

1

r

∂

∂r
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∂r

)
− vθ
r2

+ α(1− vθ) = 0,

(
α =

R2

2µsη

)
. (S14)

The quantity
√
µsη = Rh is the hydrodynamic length [1], and the ratio α is the relative size

of confinement disc (R) with respect to the hydrodynamic length Rh. The non-dimensional

Eq. S14 equation can be easily solved numerically. For low values of α the solution seems

to be very similar to a rigid body rotation. When α becomes larger, the velocity initially

increases with r and then saturates to v0. One such plot for vθ with respect to r is shown

in Fig. S2.
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