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1. Analytic expressions for tuning curves and noise covariance in the feedforward model 

Here we derive analytical expressions for tuning curves and noise covariance in the feedforward 

model. The Gabor image presented to the retina is parameterized by orientation and can therefore 

be described by a map from orientation to pixel space 

 
:
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where P  is the number of pixels in the image. Due to input (e.g. photoreceptor) noise the image is 

corrupted by independent noise of variance 
2

0
σ , and the actual sensory input is given by 
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The V1 neurons filter the sensory input by a Gabor 
P

i
R∈F  oriented according to their preferred 

orientation 
i
θ , followed by a rectifying non-linearity and a Poisson step. The neural response of 

neuron i  is then sampled from 

 ~ ([ · )]
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where []
+

 denotes linear rectification. The tuning curves and covariance matrix are given by 
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where the approximation is valid for small input noise and for neurons which are well above the 

firing threshold. 

The correlation coefficient for two neurons i j≠  is given by 
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From the expression (4) we see that the correlations between the neurons will be proportional to the 

overlap of their filters 
i

F  and 
j

F . 

 

To get an intuition how tuning curves and correlations with realistic shape arise from eq. (3) let us 

plug in the example of Gabor images and Gabor filter. The Gabor filters are given by 
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where ( , )x y  are the coordinates of the image, σ  is the size of the Gaussian envelope, λ  the 

preferred spatial wavelength, 
i
θ  the preferred angle and 

i
φ  the phase offset of the Gabor filter. 

The Gabor image is given by 

 

2 2

( , ) 2

2
( ) exp cos ( cos sin )

2
x y

x y
I x y

π
θ θ θ φ

σ λ

 +  
∝ − + +   

  
 (6) 

For now we assume that the image has the same Gaussian envelope and spatial wavelength as the 

filter. Given eq. (5) and (6) we can derive the tuning curves of the orientation population in the limit 

of a large number of pixels:  
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where L  is the receptive field size and we have defined 
2 2 2

2 /K π σ λ= . As we can see, the tuning 

curves are given by a combination of two von-Mises functions centered at 
i

θ θ=  and 
i

θ θ π= + , 

whose relative gains depend on the phase parameters 
i

φ  and φ .  

The covariance of two neurons i j≠  has a very similar form: 
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In particular if the phase of the two filters are equal, 
i j
φ φ= , the covariance is maximal if the filters 

have the same preferred tuning 
i j
θ θ= . For 

i j
θ θ≠ , the same von-Mises dependency as discussed 

above will produce the limited-range structure of the correlation matrix shown in Figure 1c. In 

general, when averaging across all possible pairs of phases, the rectification in eq. (8) will set 

negatives to zero, hence preserving the limited-range structure (for orientation differences between 

0 and 90 degrees). 

The approximations in eq. (7) and (8) are only valid for large number of pixels, which allows the 

replacement of the discrete dot product by a continuous integral. For this reason we use the more 

accurate expressions (3) to generate the figures, except when stated otherwise. As can be seen in 

Figure 1b and 1c, the limited range structure of tuning curves and covariance is also valid for small 

number of pixels. 

The model given by eq. (3) can also incorporate heterogeneous tuning by introducing a 

heterogeneous scaling of the filters. The latter can be made explicit by representing the filters as 

ˆ
i i i

a=F F , where 0
i
a >  is a random gain and 

2ˆ| | 1
i

=F  is normalized.  



 

 

 

2. Linear Fisher information in the input and the neural population 

We would like to address how much information is contained in the neural population r  compared 

to the image I% . Due to the input noise in the retina and the finite number of pixels, the Fisher 

information about orientation θ  in the image I%  is limited. It is given by 
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where /d dθ′ =  is the derivative with respect to orientation. 

To analyze the information in the neural population, we will firstly consider deterministic neurons 

without Poisson step; instead of eq. (2) the neural response is given by [ · ]
i i
r I

+
= F % . In Figure 1d in 

the main text we illustrate that the Poisson noise can be averaged out if the neural population is 

large enough. The tuning curves of deterministic neurons is the same as (3), but the covariance 

matrix is only given by the first term in (3) 
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The linear Fisher information in the neural population is therefore given by 
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The orthogonal projection matrix 
1( · )

i ij j

ij

P
−

=∑F
F F F F  is acting in the P -dimensional image space 

and projects to the vector space spanned by the filters. In particular for any vector 
P

R∈v , P =
F
v v  

if and only if the vector can be written as a linear combination of the filters. 

Comparing eq. (9) and eq. (10) we can derive the optimality condition for the neural population. The 

neural Fisher information preserves all input information, if and only if 

 ( ) { }
i i

spanθ′ ∈I F , (11) 

that is if the derivative of the image with respect to the stimulus can be written as a linear 

combination of the filters. In the suboptimal case we obtain 
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where α  is the principal angle between ( )θ′I  and the vector space { }
i i

span F . 

Given an image ( )θI  parameterized by a stimulus like orientation, can we find a set of N  linear 

filters 
i

F  such that the optimality condition in eq. (11) is satisfied for all θ ? One way to do this is to 

approximate ( )θI  in a piecewise linear manner by tiling the stimulus domain equally, 
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i N
θ θ θ π≤ <…< <…< < , and setting the filters to be proportional to the image at the 

respective stimulus value, 
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where 
i
c  and 

1i
c

+
 are some constants of proportionality. For large N  this approximation becomes 

arbitrarily good and eq. (11) is satisfied for all θ . 

In the example of the Gabor image in eq. (6) and the Gabor filter in eq. (5) with identical envelope 

and spatial frequency the condition in eq. (13) is satisfied and we expect that deterministic neurons 

retrieve all input information. 

Note also that the analysis leading to the optimality condition in eq. (11) can be generalized to the 

case of non-linear deterministic neurons in the limit of small noise variance 
2

0
σ . In this case the 

filters are given by the local gradient of the neural response with respect to the input image, 

 ( ( ))
i i

r θ∝∇
I

F I , 

and the mapping is optimal if the derivative of the image with respect to the stimulus lies in the 

tangent space of the neural response hypersurface, 
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3. Tuning curves for suboptimal filters 

Here we consider a case where the bank of filters has a different spatial frequency than the image 

and the optimality condition in eq. (11) is not satisfied. We will show that if the spatial wavelength of 

the filters is smaller than the image, the tuning curves in this suboptimal population will be narrower 

than the optimal tuning curve. This is unlike the case of independent neuronal noise, where narrower 

tuning always leads to higher information. 

Let us define Gabor filters and image with different spatial wavelengths 
F

λ  and 
I

λ , 
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As in (7), we can calculate the tuning curves by replacing the dot product by a continuous integral. 

For simplicity we also assume 
4

i

π
φ φ= = , a different choice of phases does not affect the tuning 

curve width. The tuning curves are given by  
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In particular, if the spatial wavelength of the filters is smaller than that of the image, 
F I

λ λ< , the 

tuning curves will be sharper than for the optimal value 
F I

λ λ= . 

 

4. Stimulus dependence and contrast dependence of correlations 

Consider again the model (3) in the case of heterogeneous tuning. As mentioned at the end of 

section 1, we can make the heterogeneity explicit by representing the filters as ˆ
i i i

a=F F , where 

0
i
a >  is a random gain and 

2ˆ| | 1
i

=F  is normalized. We can then re-express the tuning curves and 

covariance matrix as 
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The correlation coefficient between units i j≠  is: 
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From Equation (16) it is immediately clear that the correlation coefficient is stimulus dependent, due 

to the terms in the denominator. In particular, the stronger the stimulus θ  drives the two neurons, 

the lower the correlation coefficient drops; in the limit 
0

0σ → , the correlation is inversely 

proportional to the geometric mean of the firing rate of the neural pair. Furthermore, since changing 

the contrast of the input image ( ) ( )cθ θ→I I  linearly rescales the tuning curves by the same factor 

( ) ( )
i i
f cfθ θ→ , the correlation coefficient is also inversely proportional to contrast.  

These results are somewhat at odds with experimental data: in primary visual cortex, noise 

correlations on long time scales (several hundreds of milliseconds) decrease with contrast but are 

found to be stimulus independent; on short time scales (tens of milliseconds), they increase with 

both contrast and stimulus drive. We will show in the next section that these failures of the linear 

model can be addressed by considering a simple nonlinearity. 

Also, note that the correlations in eq. (16) increase with input noise level 
0
σ . 

 



 

 

5. Static nonlinearity: squaring  

Let us examine now the correlations in a population of nonlinear neurons, described by Gabor filters 

as above, followed by squaring and additive Poisson-like noise. To distinguish the responses, tuning 

curves, and covariances of the linear model from those of the nonlinear model, we will use the 

apexes 
( )

(·)
L

 and 
( )

(·)
NL

, respectively. The response to an arbitrary stimulus 
k
θ  is: 
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θ θ Σr fN  and straightforward calculations, it follows that the tuning 

curves and covariance of the nonlinear model before the Poisson step are: 
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After the addition of Poisson-like, independent noise, the covariance and correlations become: 

 ( ) ( ) ( ) ( ) ( )( )
2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )
24

NL L L L L L L

ij k ij i k k ij i k ii ijj
f f fθ θ θ θ δ + + + 

Σ


= Σ Σ Σ  (20) 

  

( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

2
( ) ( ) ( ) ( )

( )

2 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
( )

1 2 1 1 2 1

4

4 4

L L L L

ij i k k ijNL

ij k
L L L L L L L L

ii i k ii

j

jj j jj jjii k

f f

f f

θ θ
ρ θ

θ θ

Σ Σ

=

Σ Σ Σ Σ

+

+ Σ Σ+ + + + +

 (21) 

Let us examine first the contrast dependence of the correlation coefficient. Remember that contrast 

simply rescales the tuning curves of the linear model: ( ) ( )
i k i k
f cfθ θ→ . We can therefore rewrite 

more synthetically: 
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There is therefore a monotonic relation between correlation and contrast, and it is easy to show that 

( ) ( )( , 0) ( , )NL NL

ij k ij kc cρ θ ρ θ= < ∞→ . A similar relation holds also for the dependence of the 

correlation coefficient on the mean rate of the pair, and both results are qualitatively in agreement 

with experimental data on noise correlations in cortex at short time scales. 



 

 

We further consider the low input noise (or high contrast) regime, i.e. 
( ) ( ) ( )L L L

i j ij
f f ∝ Σ , in which the 

covariance matrix becomes: 
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The correlation coefficient becomes stimulus and contrast-independent: 
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The quadratic model also has advantages for decoding. Generally, a locally linear estimator in a fine 

discrimination task around 
0
θ  is an estimator of the form 

 
0

ˆ ·( ( ))θ θ= −w r f  

The optimal decoding weights with minimal variance for an unbiased estimator are given by (1, 2) 
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In general, the decoding weights in eq. (25) depend on contrast through both tuning curves and 

covariance matrix. If contrast fluctuates over time, as is the case in natural circumstances, the 

decoding weights need to be adapted, for example by estimating contrast on the fly.  

In the quadratic model at low noise, the covariance matrix in eq. (23) scales homogeneously with 

contrast, as do the tuning curves. The optimal decoding weights in eq. (25) only change by a constant 

of proportionality, but the relative weights do not change. If contrast fluctuates from trial to trial, as 

is the case in natural circumstances, the same relative decoding weights can be used without 

estimating contrast. 

Moreover, the scaling of the covariance matrix and tuning curves are such that the decoding weights 

in the normalization 

 
1

norm

−

= Σ ′w f  

are contrast-invariant. This implies that the feedforward model with quadratic nonlinearity 

implements a linear probabilistic population code; such a code is particularly convenient to not only 

decode the stimulus but also the confidence about the stimulus, even if contrast fluctuates from trial 

to trial (3). 

The same is however not true for the input noise level 
0
σ . The covariance matrix of both linear and 

quadratic model scale inhomogeneously with 
0
σ , and therefore the normalized decoding weights 

need to be adapted to a given level of input noise (Figure 4b,c) 

 

6. Effects of internal global fluctuations on correlations and information 



 

 

We consider now an extension of the feedforward network described above, that captures the 

doubly stochastic nature of response variability observed across the visual cortex (4), particularly 

under anesthesia (5). This has been previously described as a fluctuating gain, which is partly shared 

between neurons. The gain has a multiplicative effect on the deterministic, stimulus-driven part of 

the response, and the result of the multiplication sets the rate of the Poisson spike generator. Here 

we extend this model by assuming that the stimulus-driven response is produced according to our 

feedforward model, and is therefore itself variable. For simplicity, we assume just one gain factor 

that is shared between all neurons. The corresponding probabilistic graphical model is as follows:  
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where Σ denotes the covariance of the feedforward model (with or without nonlinearity), g is the 

gain factor and R denotes the vector of spike counts.  

First, it is easy to show under mild assumptions that the tuning curves for this model remain 

unchanged w.r.t. the feedforward model, i.e.  

 =R f  (27) 

This follows simply from the assumption that r and g are independent and / 1g α β= = , hence 

=y r . 

Second, we would like to compute the noise covariance matrix in this model, which we will denote by 

Σ
R

. We start by computing the covariance Σ
y

of the intermediate ratey : 
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where 
2 2

/
g

σ α β=  is the variance of the gain distribution. It follows that: 
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and, after the Poisson step: 
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R
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where diag( )x denotes the diagonal matrix with diagonal entries given by the elements of x . 



 

 

Eq. (30) shows that global fluctuations affect the noise covariance in two ways: 1) by rescaling the 

amplitude of the feedforward covariance (first term on the r.h.s); and 2) by adding a rank-1 

perturbation (second term on the r.h.s). What are the effects on noise correlations? To gain some 

insight, we expand the correlation between two neurons for the feedforward linear case (assuming, 

for readability, a homogeneous population with 1
i
a = ): 
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This decomposition highlights the interplay between peripheral noise and global fluctuations, in 

shaping noise correlations. The first term in the last line displays a structure of noise correlation 

similar to the purely feedforward model, i.e. where correlations are determined by filter overlap 

(numerator). However the magnitude of such correlations is influenced by the magnitude of both the 

feedforward, 
2

0
σ , and internal, 

2

g
σ , parts: increasing either type of fluctuations increases the 

magnitude of noise correlations. The second term in the last line of eq. (31) has a different behavior. 

First, the numerator itself is highly stimulus-dependent, being determined by the overall response 

strength of the pair (product of individual responses) to the stimulus (4). Second, while the 

magnitude of this contribution to correlations increases with increasing global fluctuations, it can 

only decrease with increasing peripheral noise. Therefore, overall the interplay of peripheral noise 

and global fluctuations leads to the somewhat counterintuitive result that larger peripheral noise 

leads to larger noise correlations for some pairs, but smaller for others, depending on the relative 

size of the first and second term in eq. (31). 

Given the predominance of global fluctuations in visual cortex, it is important to understand their 

impact on the information encoded in a large population. Intuitively, a global scaling of the 

population response affects only the height of the population hill of activity, leaving the location of 

the peak (and therefore the stimulus value extracted by a linear readout) unchanged. Therefore, one 

could expect that global fluctuations do not change information. We show here that this intuition is 

only partly correct: Global fluctuations do not, by themselves, limit information in a large population, 

but they do further decrease the asymptotic value when information is already limited in the input. 

First, we show that global fluctuations do not limit information in large populations. Suppose we 

started from a population with tuning and covariance such that 
1

' '
−

Σf f
⊤

is O(N) (i.e. it grows 

indefinitely as we increase the population size). Now remember that in eq. (29) global fluctuations 

have two effects. First, they rescale the covariance by a factor that only depends on the amplitude of 

the fluctuations (and therefore does not change with population size). Second, they add a rank-1 

perturbation proportional to ff
⊤

. As shown by Moreno et al. (6), a rank-1 perturbation only limits 

information if it is parallel to ' 'f f
⊤

For ff
⊤

, this is the case only if the stimulus is encoded in the 



 

 

amplitude of the population response; or, more precisely, if ( )θf  defines a zero-curvature line when 

θ  is varied (e.g. 
i i
f aθ= ). Therefore, global fluctuations do not limit information in general (and 

about orientation, in particular). 

Nonetheless, we would like to assess more precisely the effect of global fluctuations on information, 

i.e. if there is any information loss, and how big. We start again from eq. (29). To compute linear 

Fisher information we need to invert Σ
y

, which can be done using the Morrison-Sherman lemma: 
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From this it follows that the linear Fisher information in the network with global fluctuations is: 
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From this decomposition it is obvious that, whenever
2

0
g
σ > , information is reduced with respect to 

the purely feedforward network. The first term in the second line of eq. (33) coincides with the 

feedforward information, rescaled by a factor smaller than 1. Furthermore, the second term is 

always negative, and therefore further reduces information. 

We conclude therefore that global fluctuations are not responsible for limiting information in large 

populations, but nonetheless they interact with feedforward-induced variability in a way that 

substantially affects the structure of noise correlations, and that reduces the information in the 

population. 

7. The size of differential correlations 

Here we show that any information-limiting covariance matrix can be split into a positive definite 

non-information-limiting part and an information-limiting part and analyze the size of differential 

correlations. 

Let Σ  be an information-limiting covariance matrix, that is the information saturates to a finite 

value, 
1

· FI
−

∞
′ Σ ′→f f  as N →∞ . To find the size of differential correlations, we would like to 

calculate the maximum amount of differential correlations we can subtract such that the remaining 

matrix is still positive definite. Defining 
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Σ = Σ− ′ ′f f
ε

ε , 

we are looking for the maximum ε  such that Σ
ε

 is still positive definite for all N . 

Due to the matrix determinant lemma, the determinant of Σ
ε

 is given by 
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−
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ε � . (34) 

For fixed N  and 
1

1
0

·
−

≤ <
′Σ ′f f

ε , the determinant of Σ
ε

 is strictly positive. We would like to show 

that Σ
ε

 is also positive definite in that interval, or equivalently, that all eigenvalues are strictly 

positive. By assumption, we know that Σ
ε

 is positive definite for 0=ε . If at least one eigenvalue has 

negative sign for some value of 
1 1

1
[0, [

·
−

∈
′Σ ′f f

ε , the intermediate value theorem implies that there 

must be an 
2
ε , 

2 1 1

1
0

·
−

≤ <
′ ′

<
Σf f

ε ε , such that the same eigenvalue is exactly zero, resulting in a 

zero determinant. This contradicts with the result above that the determinant is strictly positive for 

all 
1

1
0

·
−

≤ <
′Σ ′f f

ε . This implies that Σ
ε

 is strictly positive definite in this interval and only becomes 

positive semi-definite for 
1

1

·
−

=
′Σ ′f f

ε . 

Consequently, the maximum ε  across N  is given by 
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·
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∞
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′Σ ′f f

ε , (35) 

where the last equality holds if the information as a function of N  is well approximated by a 

monotonously increasing function, as is the case in most examples in the literature and in particular 

in our network (Figure 1d). 

How large is the contribution of the differential correlations, 
T

max
′ ′f fε , to an element of the 

covariance matrix Σ ? To get an intuition consider the case of homogeneous Gaussian tuning curves 

of width 
t

σ  and a general stimulus parameter s . The contribution of the differential correlations is 
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The scale of this contribution is set by the fraction 
2

max

t
σ

ε

. If the behavioral readout of the neural 

population is close to optimal, eq. (35) implies that 
2

max P
θ≈ε , where 

P
θ  is the psychophysical 

threshold. This implies that the contribution of the differential correlations will be small whenever 

the psychophysical threshold is smaller than the tuning curve width. 



 

 

As an example consider orientation discrimination at high contrast, where psychophysical thresholds 

are typically around 2
P
θ

°
= (7). In V1, tuning curve widths are typically around 20

t
σ

°
=  or larger 

(8). In this case the value of the prefactor is 

 

2

2 2
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θ

σ σ
= =

ε

, 

giving rise to very small differential fluctuations. This explains why subtracting differential 

correlations in Figure 6 has such a small effect on the correlation structure. 

 

8. Optimality of human subjects in orientation discrimination  

Here we show that the thresholds for orientation discrimination reported for human subjects in 

perceptual learning studies (7, 9) are extremely close to the ideal observer. To do so, we will first 

compute the input information, under some simple assumptions. Second, we will explain the metric 

used in the psychophysics experiments, namely the threshold versus external noise contrast (TVC) 

curve; and we will show how to convert input information to a corresponding TVC curve. This will 

allow us to compare the TVC based on the input information (i.e., the ideal observer performance) to 

that measured experimentally.  

The information in the input images, 
input

FI , can be computed using eq. (9). To do so, we need to 

estimate the parameters defining the images used in the experiment, and the amount of noise 

corrupting peripheral signals, which we denoted 
2

0
σ . In (7), Gabor images corrupted by white noise 

were used. The Gabor parameters are given in the table below. 

Parameters of the Gabor images used in (7) 

Symbol Meaning Value 

P  Side length (pixels) 64 (1.54 degrees) 

θ  Orientation (degrees) [ ]12,12−  

σ  Gaussian envelope std 

(degrees) 

0.385 

ω  Preferred spatial frequency 

(cycles/degree) 

2.3 

ext
σ  External noise std 

(proportion of pixel range) 
[ ]0,0.02,0.04,0.08,0.16,0.25,0.33  

c  Contrast Variable, see text 

 

The images were presented parafoveally in the lower right visual field (3.1 degrees horizontally and 

2.3 degrees vertically). At those eccentricities, the high spatial frequency cutoff for most V1 neurons 

is below 8 cycles/degree (10). This suggests that, effectively, the input to parafoveal V1 corresponds 

to approximately 16 independent pixels per degree. Therefore, before computing input information, 

we scaled the images to a size of 25 pixels (16 pixels/degree times 1.54 degrees), and similarly 

transformed ω  and σ  assuming 16 pixels/degree. To test the robustness to this assumption, we 

also considered other resolutions, namely 12 and 20 pixels/degree (Figure 9b). We computed the 

image derivative numerically, rather than using analytical derivative of eq. (6), because of the small 



 

 

number of pixels. We did so by taking the difference between the images at the two test orientations 

(-12, 12 degrees), and dividing by the orientation difference. Lastly, to determine the level of the 

noise injected at the periphery, 
0
σ , we used the inflection point of the experimental TVC curves (11, 

12). We varied 
0
σ  between 0.04 and 0.08 (Figure 9c). 

We now specify the relation between input information and ideal observer TVC curves. In a typical 

discrimination task the subject is asked to distinguish two similar stimuli, dθ θ θ
+

= + and 

dθ θ θ
−

= − . Linear Fisher information is the inverse of the variance of the estimate of the stimulus 

based on the optimal linear decoder. Decoder performance, quantified by the proportion of correctly 

classified trials, and Fisher information are directly related. Specifically, proportion correct is given by 

2

I
P

d Fθ 
Φ 
 

=  , where Φ  is the Normal cumulative distribution function. During the 

experiments of (7), for each level of external noise, contrast was varied until subjects reached a 

prespecified performance level (79.3% correct). We did the same for the ideal observer, namely, for 

each noise level, we searched for the signal contrast level such that the input information 

corresponded to the desired percent correct, and so built a TVC curve for the ideal observer (Figure 

9bc). 

Comparison to the performance of the human subjects (Figure 9a) shows that, after perceptual 

learning, they were extremely close to the ideal observer. 

  



 

 

 

9. Simulation details 

The tables below provide implementation details and parameter values for the simulations used to 

generate the figures. 

 

Table 1 For each model variant, we provide in this table its acronym and the list of the figures based 

on that model. 

  

MODEL ACRONYM FIGURE USED 

Linear-rectified-Poisson LRP 1-6, 8; S1-S4 

LRP with heterogeneous filters LRPH 2, 5 

LRP with suboptimal filters LRPS 3 

Linear-quadratic-Poisson  LQP 4; S2 

LRP with global fluctuations LRGP 5 

LRP with global fluctuations, 

with heterogeneous filters 

LRGPH 5 

LRP minus differential 

correlations 

LRPM 6, 8; S4 

Synthetic tuning curves  SYNTH 7 

LRP with larger filters LRPV4 S1 



 

 

Figures 1, 3, 6, 8, S2, S3, S4 

INPUT IMAGES 

Symbol Meaning Value 

P  Side length (pixels) 12 

θ  Orientation (degrees) 0 

σ  Gaussian envelope std 

(degrees) 

/ 3P  

λ  Preferred spatial 

wavelength (pixel/cycle) 
1.5P  

φ  Preferred spatial phase 0 

c  Michelson contrast 1 

0
σ  Input noise std 

(proportion of pixel 

range) 

0.2 

 

FILTERS 

Symbol Meaning Value 

N  Number of neurons [ ]10,20,50,100,200,500,1000,2000,10000  

P  RF side length (pixels) 12 

θ  Preferred orientation 

(degrees) 
360 180( 1)

180 : :
N

N N

−
−
 
  

 

σ  Gaussian envelope std 

(pixels) 

/ 3P  

λ (LRP, LRPM) Preferred spatial 

wavelength (pixel/cycle) 
1.5P   

λ (LRPS) Preferred spatial 

wavelength (pixel/cycle) 

/ 2P   

φ  Preferred spatial phase 0 

k
g  Tuning amplitude 

( )2

20

~ 0, 0.25

k k

k

ga

LogN

g

g

ala orm µ σ =

=

=

=

 

Table 2 Parameters of the orientation network and its inputs, used in Figures 1,3,6,8, S2, S3, S4. 

Simulations are repeated 50 times for each population size, then information values are averaged. 

  



 

 

Figure 2,5 

INPUT IMAGES 

Symbol Meaning Value 

P  Side length (pixels) 48 

θ  Orientation (degrees) 0 

σ  Gaussian envelope std 

(degrees) 

/12P  

λ  Preferred spatial 

wavelength (pixel/cycle) 
6P  

φ  Preferred spatial phase 0 

c  Michelson contrast 1 

0
σ  Input noise std 

(proportion of pixel 

range) 

0.2 

 

FILTERS 

Symbol Meaning Value 

N  Number of neurons [ ]10,20,50,100,200,500,1000,2000,10000  

P  RF side length (pixels) 48 

θ  Preferred orientation 

(degrees) 
360 180( 1)

180 : :
N

N N

−
−
 
  

 

( ),
c c
x y  (LRP, LRGP)  Receptive field center 

coordinates 
;0 0

c c
x y= =  

λ (LRP, LRGP)  Preferred spatial 

wavelength (pixel/cycle) 
6P  

σ (LRP, LRGP) Gaussian envelope std 

(pixels) 

/12P  

( ),
c c
x y  (LRPH, LRGPH)  Receptive field center 

coordinates 
( )~ unif 1, ,1

c c
x y −  

λ (LRPH, LRGPH)  Preferred spatial 

wavelength (pixel/cycle) 
( )( )2

/ 4

~ log 2 , 0.25

P

LogNormal

λ ω

ω µ σ =

=

=

 

σ (LRPH, LRGPH) Gaussian envelope std 

(pixels) 
2 3λ  

φ  Preferred spatial phase 0 

k
g  Tuning amplitude 

( )2

20

~ 0, 0.25

k k

k

ga

LogN

g

g

ala orm µ σ =

=

=

=

 

g
σ  Internal noise std 0.03g  

Table 3 Parameters of the orientation network and its inputs, used in Figures 2 and 5. Simulations are 

repeated 50 times for each population size, then information values are averaged. In these 

simulations we used larger value for P to allow for the larger range of RF sizes and positions. 

  



 

 

Figure 4 

INPUT IMAGES 

Symbol Meaning Value 

P  Side length (pixels) 32 

θ  Orientation (degrees) 0 

σ  Gaussian envelope std 

(degrees) 

/ 4.5P  

λ  Preferred spatial 

wavelength (pixel/cycle) 
1.5P  

φ  Preferred spatial phase 0 

c  Michelson contrast [ ]0.1,0.2,0.5,1 ; c=0.2 in Figure 4c 

0
σ  Input noise std 

(proportion of pixel 

range) 

0
0.2σ =  

ext
σ  External noise std 

(proportion of pixel 

range) 

[ ]0,0.05,0.1,0.2  

 

FILTERS 

Symbol Meaning Value 

N  Number of neurons 100 

P  RF side length (pixels) 32 

θ  Preferred orientation 

(degrees) 
360 180( 1)

180 : :
N

N N

−
−
 
  

 

σ  Gaussian envelope std 

(pixels) 

/ 4.5P  

λ  Preferred spatial 

wavelength (pixel/cycle) 
1.5P   

φ  Preferred spatial phase 0 

k
g (LRP) Tuning amplitude 

( )2

20

~ 0, 0.25

k k

k

ga

LogN

g

g

ala orm µ σ =

=

=

=

 

( )Q

k
g (LQP) Tuning amplitude ( )Q

3
k k

g g=  

Table 4 Parameters of the orientation network and its inputs, used in Figure 4. In Figure 4b,c  

decoding weights are averaged over 100 realizations of the network with random gains. The gains for 

the LQP model are chosen to approximately match the tuning amplitude of the LRP model at a 

contrast of 0.5. In these simulations we used larger value for P to avoid artifacts in the decoding 

weights due to inversion of the covariance matrix. 

  



 

 

Figure 7 

SYNTHETIC TUNING CURVES 

Symbol Meaning Value 

N  Number of neurons [ ]0:0.5:6

10  

k
f  Tuning curve ( )co

20

s
k k

bg

b

θ θ

=

= −

 

kl
Σ  Noise covariance matrix ( )(1 ) cos

0.12

kl kl k l
c c

c

δ θ θ−= −

=

Σ +
 

Table 5 Parameters of the model with synthetic tuning curves, used in Figure 7. The model uses 

synthetic tuning curves and covariance matrix, as in (6). 

  



 

 

Figure S1 

INPUT IMAGES 

Symbol Meaning Value 

P  Side length (pixels) 24 

θ  Orientation (degrees) 0 

σ  Gaussian envelope std 

(degrees) 

/ 4.5P  

λ  Preferred spatial 

wavelength (pixel/cycle) 
3P  

φ  Preferred spatial phase 0 

c  Michelson contrast 1 

0
σ  Input noise std 

(proportion of pixel 

range) 

0.2 

 

FILTERS 

Symbol Meaning Value 

N  Number of neurons 1000 

P  RF side length (pixels) 24 

θ  Preferred orientation 

(degrees) 

0 

σ (LRP) Gaussian envelope std 

(pixels) 

/ 9P  

σ (LRPV4) Gaussian envelope std 

(pixels) 

/ 4.5P  

λ  Preferred spatial 

wavelength (pixel/cycle) 
3P   

( ),
c c
x y  Coordinates of RF center 3

: :
4 2 4

0

c

c

P P P
x

N

y

 
=   

=

 

φ  Preferred spatial phase 0 

k
g  Tuning amplitude 

( )2

20

~ 0, 0.25

k k

k

ga

LogN

g

g

ala orm µ σ =

=

=

=

 

Table 6 Parameters of the orientation network and its inputs, used in Figure S1.  

  



 

 

10. Supplementary Figures 

 

Figure S 1. Dependence of noise correlations on the filters spatial overlap. (a) Normalized noise 

correlations vs. cortical distance between electrode tips, in macaque V1 (red) and V4 (black). 

Reproduced after (13). The normalization is relative to the pairs with most overlapping receptive 

fields (RF), separately for each size. (b) Normalized noise correlations vs. center-to-center distance 

between filters, for small (red) and large (black) filters. Filter parameters are reported in Table S6. 

  



 

 

 

Figure S2. Effects of static nonlinearity on information. Linear Fisher information vs. population size 

for networks with half-rectification (black) or quadratic nonlinearity (brown). Parameters are set to 

the same values as Figure 1 (listed in Table S2), except for the neuronal response gain for the 

quadratic model, which is chosen to approximately match the tuning amplitude of the model with 

half-rectification at a contrast of 0.5. 

  



 

 

 

Figure S 3. Dependence of noise correlations and information on input noise level. (a) Noise 

correlations induced by feedforward connectivity increase with external noise level. (b) Information 

as a function of the number of neurons in the V1 layer (solid lines) and asymptotic information 

(dashed lines), for different levels of external noise. (c) Information in V1 populations of increasing 

size, relative to the asymptotic information. Population information does not simply scale with 

external noise level. At larger external noise, fewer neurons are required to achieve saturation. 

Parameters are set to the same values as Figure 1 (listed in Table S2), except for the peripheral noise 

level which is indicated in the legend in panel (a). 

  



 

 

 

Figure S 4. Effects of removing differential correlations. Density plot of correlation coefficients 

across all pairs, before (abscissa) and after (ordinate) removing differential correlations. Simulations 

are based on the same parameters as main Figure 6, except N=10,000. 
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