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S1 Gating Strategies
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Figure S1.1: Gating strategy for identification of naive CD4 and CD8 lymphocytes in busulfan chimeras. (A)
Gating thymic subsets. Density plot headings indicate the gates applied to the corresponding plot. Electronic gates
are indicated in dashed lines and numbered. CD4 SP were analysed by applying the gate ‘live•1•5•6’ to iden-
tify CD4+CD8-TCRhiCD5hiCD44lo CD25- cells. CD8 SP were analysed by applying ‘live•2•7•8’ to identify CD4-
CD8+TCRhiCD5hiCD44lo cells. (B) Gating lymph node subsets. CD4 naive were analysed by applying ‘live•1•2•4’
to identify CD4+TCRhiCD5hiCD44loCD25- cells. CD8 naive were analysed by applying ’live•1•3•5’ to identify
CD8+TCRhiCD5hiCD44lo cells.
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S2 Fitting two datasets simultaneously

Fitting two functions, potentially with common parameters, to two distinct sets of data requires combining two partial likelihoods
and we recap the formalism here. Let f(x) and g(x) be the functions we wish to fit to each dataset, and F = Tf (f) and G = Tg(g)
are transformed functions that for best-fit parameters yield normally distributed residuals. If the two datasets have nf and ng
observations respectively, the likelihood is

L =

nf∏
i

1√
2πσi

exp

(
−(xi −Fi)2

2σ2
i

)
×

ng∏
j

1√
2πσj

exp

(
−(xj − Gj)2

2σ2
j

)

=
exp

(
−RSSF/2σ2

F
)(√

2πσF
)nf

×
exp

(
−RSSG/2σ2

G
)(√

2πσG
)ng

, (S2.1)

where RSS denotes the residual sum of squares and we assume constant and unknown variances σ2
F and σ2

G within each set of
observations. The log-likelihood is then

lnL = −nf ln
(√

2πσF
)
− ng ln

(√
2πσG

)
− RSSF

2σ2
F
− RSSG

2σ2
G
. (S2.2)

Maximum likelihood estimates of σ2
F and σ2

G are given by

∂σkL = −nk
σk

+
RSSk
σ3
k

= 0 =⇒ σ̂2
k =

RSSk
nk

.

Substituting these into equation S2.2 gives the following expression for the combined log-likelihood,

lnL = −1

2
ln
[(

RSSnf

F
) (

RSSng

G
)]
− (nf + ng). (S2.3)

In the case nf = ng = n, which applies to all datasets considered in this study, the quantity to maximise is the sum of the log
likelihoods or, equivalently, minimising the product of the residual sum of squares within each dataset:

lnL = −n
2

ln (RSSF × RSSG)− 2n. (S2.4)

When quoting AIC values, we use the sample-size-corrected expression

AICc = n ln (RSSF × RSSG) + 2k +
2k(1 + k)

2n− k − 1
, (S2.5)

which is correct up to terms in the log likelihood containing n only, and the number of observations is 2n.
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S3 Comparison of rescaled donor fractions normalised to DP1 and SP
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Figure S3.1: Comparing the timecourses of the donor fraction in the periphery normalised to the relevant single-
positive (SP) population (open circles, as used in the analyses) and DP1 (solid circles). Shaded regions contain data
obtained before equilibration of the donor fraction at all developmental stages in the thymus (taken to be complete at 42
days post-BMT) and were not used for fitting (see main text).
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S4 Very general homogeneous models cannot explain kinetics of peripheral
chimerism

The simplest model of naive population dynamics with constant rates of division and death was unable to explain the normalised
donor fraction asymptoting to a value less than 1, suggesting the model of incumbents and displaceable cells. Here we explore
the possibility that a kinetically homogeneous population with time-varying rates of divison and death can explain the data. This
model is

dN(t)

dt
= θ(t)− [δ(t)− ρ(t)]N(t), (S4.1)

= Θe−νt − λ(t)N(t),

where thymic involution occurs exponentially (Figure 2 in the main text). We take λ(t) = δ(t)− ρ(t) ≥ 0 since total cell counts are
decreasing for part of the timecourse; were λ(t) to be negative, dN(t)/dt would be greater than zero ∀t.

Using this fact to define Λ(t) =
∫ t

0
λ(t′)dt′ ≥ 0, and following the previous logic, we can define a pair of such equations, one each

for donor and host populations, and calculate the donor fraction. This yields

fd(t) = 1− 1− fd(0)

1 + Θ
N0

∫ t
0
e−νt′+Λ(t′)dt′

(S4.2)

where we have made use of exp[Λ(0)] = 1. If the integral in the above expression diverges, then fd → 1 regardless of the other
parameters. Here it is sufficient to consider the situation in which the integral converges as fast as possible, and show that this is
still too slow to describe the observed data.

Because Λ(t) is a positive non-decreasing function, the integrand will decrease fastest when Λ(t) is a small constant. In this case,
the integral can be solved analytically as ∫ t>τ

τ

e−νt
′+Λ(t′)dt′ '

∫ t>τ

τ

e−νt
′+Λmaxdt′,

=
eΛmax

ν

(
e−ντ − e−νt

)
. (S4.3)

where t = τ ≥ 0 corresponds to the point at which the integrand has a maximum. Thus the integral converges according to
the exponential time constant ν which is relatively slow. Even if the integral were to begin converging from the start of the
timecourse, with ν ∼ 0.0048 days−1 it would only have converged to within 5% by approximately 600 days, well beyond what is
observed.

Therefore using estimates of ν we have shown that using a fairly general λ(t) one cannot simultaneously satisfy the requirement
that the total cell counts be decreasing at large t, and have the donor fraction asymptote in the time frame observed.
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S5 Fitting the incumbent-displaceable model

We extended the model to include a population of host cells resistant to displacement (‘incumbents’). The model is described in
equations 8-10 in the main text. Solving these equations with initial conditions Nh(0) = N0 − Nd(0), Ih(0) = I0 and Nd(0) =
χfd(0)(N0 + I0) gives

Normalised donor fraction fd =
Nd(t)

Nh(t) + Ih(t) +Nd(t)
/χ,

=

(
e(λ−ν)t − 1

)
Θ/N0 + (1 + I0/N0) (λ− ν)fd(0)

(λ− ν) [(I0/N0)e(λ−λI )t + 1] + (Θ/N0) [e(λ−ν)t − 1]
, (S5.1)

where here t = 0 corresponds to the time at which host:donor chimerism has stabilised at all stages of thymic development, and
not the time of treatment.

The population sizes I0 andN0 and the rate of thymic output Θ will vary across animals. However we expect the ratios I0/N0 and
N0/Θ to be only weakly dependent on chimerism and body mass since, as before, thymic output might reasonably be assumed
proportional to the sizes of peripheral naive populations. Hence we took equation S5.1 to be applicable across animals. Fitting it
to the normalised donor fraction alone potentially allowed cell counts to reach unphysiological values, so to avoid this we fitted
simultaneously to the normalised donor fraction (equation S5.1) and the total naive cell counts, yielding estimates for λ, λI , I0,
N0, Θ, and fd(0).
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S6 Naive phenotype is preserved in host and donor cells over a year post-
treatment
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Figure S6.1: Donor and host naive T cell phenotype in busulfan chimeras. Busulfan chimeras were generated
using CD45.1 hosts reconstituted with CD45.2 donor bonemarrow (see Methods). Density plots show CD25 vs
CD44 by CD4+TCRhiCD5hi T cells amongst CD45.1 host or CD45.2 donor origin populations, and CD44 vs TCR by
CD8+TCRhiCD5hi T cells amongst CD45.1 host or CD45.2 donor origin populations. Boxes indicate gates used to iden-
tify naive T cells. Data shown from chimeras 8 wks, 18 wks and 52 wks after reconstitution. Histograms show CD62L
and CD122 expression by naive gated CD4 (columns 1-2) and CD8 (columns 3-4) T cells of host origin (columns 1,3)
and donor origin (columns 2,4) (thin black lines), compared with total CD44hiCD25- memory populations of the corre-
sponding subset, from the 52wk timepoint.
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S7 A model of cell-age-dependent kinetics

Rather than considering the loss rate to be a function of host age, λ(t), we can consider λ(a) where a denotes the time since
a particular cell lineage has left the thymus – that is a is the post-thymic age of a cell and which is assumed to be inherited
by daughter cells during division. We postulate that a net loss rate declining with cell age may give rise to the donor fraction
profile we see, without needing to invoke a clear distinction between incumbents and displaceable cells. In this case the system is
described by the following PDE:

∂tN(t, a) + ∂aN(t, a) = −λ(a)N(t, a), (S7.1)

where N(t, a) is a cell density. The naive T cell population size is N(t) =
∫
N(t, a)da where we integrate over all allowable cell

ages. This can be re-written as

dN(t, a)

dt
= ∂tN(t, a) + ∂aN(t, a)

da

dt
,

= ∂tN(t, a) + ∂aN(t, a),

= −λ(a)N(t, a), (S7.2)

using da/dt = 1. The boundary conditions of this problem are

N(0, a) = g(a),

N(t, 0) = θ(t), (S7.3)

where g(a) is the initial age distribution of cells and θ(t) is the rate of thymic output, i.e. cells with age a = 0. Here we outline the
general procedure for solving this system, and then further subdivide into host and donor compartments.

We approach this by treating separately the cells present in the periphery at time t = 0, Ninit(t, a), and those generated subse-
quently by the thymus, Nθ(t, a). We deal with pre-existing cells first. Because da/dt = 1, t = a− s for some constant s and we can
re-write eqn. S7.2 and its boundary condition as

d

dt
Ninit(t, s) = −λ(t+ s)Ninit(t, s),

Ninit(0, s) = g(s). (S7.4)

This is an implementation of the method of characteristics which tracks the fate of a cohort of cells of initial ages in the range (s,
s+ ds), drawn from some initial age distribution g(s), from time t = 0 and subject to the age-dependent loss rate λ(a) = λ(t+ s).
The parameter s thus indexes the cohorts and can be considered a constant. Ninit(t, s) is the density of cells in the periphery at
time t deriving from the cells of age s at t = 0,

Ninit(t, s) = g(s) exp

(
−
∫ t

0

λ(τ + s)dτ

)
. (S7.5)

obtained by solving (S7.4). This gives

Ninit(t, a) = g(a− t) exp

(
−
∫ t

0

λ(τ + a− t)dτ
)
, for a ≥ t. (S7.6)

To this population we add all surviving cells that emerged from the thymus from t = 0 onwards. The number of such ’new’ cells
of age a at time t, Nθ(t, a), is governed by the same equation but with a different boundary condition:

dNθ(t, a)

da
= ∂aNθ(t, a) + ∂tNθ(t, a)

dt

da
= −λ(a)Nθ(t, a),

Nθ(t, 0) = θ(t).

Using t = a+ s for some constant s,

d

ds
Nθ(s, a) = −λ(a)Nθ(s, a),

Nθ(s, 0) = θ(s),

=⇒ Nθ(s, a) = θ(s) exp

(
−
∫ a

0

λ(τ)dτ

)
,

which gives

Nθ(t, a) = θ(t− a) exp

(
−
∫ a

0

λ(τ)dτ

)
for a ≤ t. (S7.7)
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The total density of cells of age a at time t,N(t, a), is therefore the sum of the two population densities (S7.6) and (S7.7). The thymus
is the source of the initial distribution of cells, which gives us the continuity conditionNθ(0, 0) = Ninit(0, 0) , or g(0) = θ(0).

To apply the above formalism to busulfan chimeras, first we define t = 0 to be the time of bone marrow transplant (BMT). This
definition is in contrast to the incumbent/displaceable model, in which time is measured from the point that the host/donor
composition of the thymus has equilibrated. The age distribution of donor cells at BMT is therefore zero (gd(a) = 0). We then
have three functions to consider: the initial host population Nh

init(t, a), host cells exported post-BMT Nh
θ (t, a), and donor cells

Nd
θ (t, a).

To connect to the observations, we integrate over cell age a to give the host and donor population sizes Nh(t) and Nd(t), from
which we obtain the total naive T cell population size and the normalised donor fraction fd. We also need to specify the rates of
thymic output θh(t) and θd(t); the loss rate λ(a); and the age distribution of host cells at BMT, g(a). We assume that total thymic
export θtotal(t) = θtotal(0)e−νt, where ν is the rate of thymic involution and t = 0 is the time of BMT, and that total thymic export
is unaffected by treatment (Figure 1D). Following BMT, donor cell output reaches its saturating level χθtotal(t) over a timescale τ
and host cell output falls in tandem to (1−χ)θtotal(t). We assume that the net rate of loss in the periphery λ(a) falls exponentially
with time since thymic export at a rate r. The age distribution of host cells at t = 0 is unknown; we assumed an increasing,
power-law dependence of g on a, over-representing older cells, corresponding to cells exported soon after birth proliferating more
than those exported later. With these constraints and assumptions we then have:

θd(t) = θtotalχ

{
(t/τ)1/µ : t ≤ τ
1 : t > τ

θh(t) = θtotal − θd(t),

λ(a) = `e−ra,

g(a) =

{
Aap + θh(0) : a ≤ aBMT

0 : a > aBMT
(S7.8)

where the parameter µ controls the steepness of the transition to stable chimerism and aBMT is the mouse age at treatment (typically
8 weeks). The constant A is determined by the condition

∫ aBMT
0

g(a)da = N0, where N0 is the peripheral population size at
treatment. Allowing N0 to be a free parameter resulted in unphysiological values, and so we set this to 2.78× 107 and 2.13× 107

for CD4 and CD8 respectively, based on counts in busulfan chimeras mice at that age. The form chosen for g(a) automatically
satisfies the continuity condition g(0) = θ(0) = θh(0).

We fitted this model to the data for three values of p ∈ {1/2, 1, 2}. We found clear support for p = 1/2 for CD4 T cells but equal
support for all values of p for CD8 cells (Table S7.1). The form of λ(a) above represents the case where cells’ competitive fitness
increases continuously with age; we also investigated unimodal forms for λ, giving competitive advantages to both very young
and older cells, but these yielded inferior fits (Table S7.1). Fits to CD4 and CD8 data using p = 1/2, and selected parameter
estimates, are shown in Figure S7.1; details of parameter estimates are in Table S7.2; values are consistent with those predicted by
the incumbent/displaceable model.

p λ(a) = `e−ra λ(a) = a`e−ra λ(a) = (a+ k)`e−ra

∆AIC4 1/2 0 8.28 2.08
1 1.14 8.38 3.28
2 3.27 8.52 4.47

∆AIC8 1/2 0.035 14.07 2.15
1 0.019 13.94 2.14
2 0 13.79 15.39

Number of fitted parameters - 3 3 4
(including Θ0)

Table S7.1: Comparison of age-structured models. AIC differences for different functional forms of the cell-age-
dependent loss rate λ(a) and initial age-distribution of mature naive cells, g(a).
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Figure S7.1: The age-dependent turnover model. A Normalised donor fractions and total naive counts,
plus fits. Shaded regions represent 95% confidence envelopes. B Parameter estimates in days (see Table S7.2
for numerical values).
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Parameter Relative loss rate Naive CD4 Naive CD8
Ki67hi /Ki67lo

Mean net-loss rate (/day) λ̄ – 0.031 (0.026, 0.035) 0.015 (0.013, 0.017)
Half-life of function (days) ln(2)/r – 74 (61, 96) 164 (117, 267)
Net loss rate of new cells (RTE) (/day) λ(0) = ` – 0.047 (0.037, 0.054) 0.021 (0.017, 0.026)
Daily thymic output at 6 weeks post-BMT θtotal(42) – 6.98 (5.89, 8.27)× 105 2.99 (2.57, 3.52)× 105

Daily thymic output as proportion θtotal(42)/N(42) – 0.031 (0.026, 0.036) 0.015 (0.013, 0.018)
of peripheral numbers 6 weeks post-BMT
Expected residence time (days) 1/δ 1 30 (25, 35) 53 (41, 62)
Expected interdivision time (days) 1/ρ 1 408 (121, 1190) 283 (106, 615)

Table S7.2: Kinetic parameter estimates using the age-structured model of heterogeneity. λ̄ is the value averaged
over the best-fit distribution of cell ages N(t, a), and the residence and interdivision times are mouse-lifetime averages,
using λ̄ with the measured Ki67 expression levels (Figure 4 in main text) and the procedure described in Supporting
Information S8.
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S8 Using Ki67 expression to extract division and death rates from the net loss
rate

Figure S8.1 illustrates an extension to the basic model of homogeneous turnover that distinguishes between cells that are quiescent,
Ki67lo(X), and those that are dividing or recently divided, Ki67hi(Y ). The return to from high to low Ki67 expression takes place
at a rate β;

dX

dt
= θ(t)(1− ε) + βY (t)− (α+ δX)X(t) (S8.1)

dY

dt
= θ(t)ε+ α [2X(t) + Y (t)]− (β + δY )Y (t) (S8.2)

Quiescent

Thymic input

Dividing/ 
Recently divided

Ki67lo Ki67hi

Thymic input

Loss of Ki67
expression

Entry into
division

Figure S8.1: Simple two-compartment model of homeostatic proliferation using Ki67 as a marker of dividing and
recently divided cells.

The parameter ε is the proportion of cells leaving the thymus that are Ki67hi as they enter the naive pool. Recalling equation 1 in
the main text,

dN

dt
= θ(t) + (ρ− δ)N(t),

the proliferation rate ρ is then calculated by equating the total rate of non-thymic production of cells in the single-compartment
model and the extended model in Figure S8.1. Adding Eqns. S8.1 and S8.2 gives

d(X + Y )

dt
≡ dN

dt
= θ(t) + α(X + Y )− (δXX + δY Y )

giving ρN = α(X + Y ) and δN = δXX + δY Y . We assume thymic output θ(t) changes slowly relative to the rate of return to
Ki67lo from Ki67hi , and so X and Y are in quasi-equilibrium. If κ is the measured fraction of cells that are Ki67hi, Y/(X + Y ),
then

ρ = α, κ =
α(2− ε) + δXε

α+ β + δY + ε(δX − δY )

which after eliminating α gives

ρ =
δY κ(1− ε) + κβ − δXε(1− κ)

2− κ− ε (S8.3)

Similarly, if σ is the relative susceptibilty to death of Ki67hi over Ki67lo cells, such that δY = σδX , then

δ = δY

(
1− κ
σ

+ κ

)
. (S8.4)

Using Eqns. S8.3 and S8.4 with the relation λ = δ− ρ we obtain the proliferation rate as a function of measurable parameters – the
net loss rate in the periphery λ, the Ki67hi fraction κ, the mean lifetime of Ki67 expression, T = 1/β, and σ;

ρ =
κ(1 + κ(σ − 1) + λT (ε+ σ − εσ))− λTε

T (1− κ)(2 + κ(σ − 1))
, δ = λ+ ρ =

(1 + κ(σ − 1))(κ+ λT (2− ε− κ))

T (1− κ)(2 + κ(σ − 1)
. (S8.5)

In all results presented in the main text we assumed ε = 0.2 but Figure S8.2 depicts the mean residence time as a function of both
ε and σ. For the value of ε used in our primary calculations there is no unphysical region, as depicted in Figure S8.2, for either cell
type.
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Figure S8.2: Effect of the level of Ki-67 expression in cells leaving the thymus on the estimated mean
residence times of naive CD4 T cells. Here we plot 1/δ as in equation S8.4 using the best-fit value of the net
loss rate, λ = 0.0262/day and the mean Ki67hi fraction κ = 0.045; and T = 1/β = 4 days. The area beyond
the dashed line represents an unphysical region where ρ < 0. Shown for parameters estimated from CD4
cells. For CD8 cells, λ ' 0.0143/day and the unphysical region is vanishingly small.
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S9 A homogeneous model with declining efficiency of RTE incorporation

Here we consider another alternative to the incumbent model in which we aim to explain the incomplete replacement with donor
cells by assuming that the rate at which RTE mature into naive cells declines with the age of the host. We assume that host
and donor cells are kinetically identical, and partition RTE kinetics into the difference between division and death, λr , which we
assume is constant with age, and a declining rate of differentiation into mature naive cells, µ exp(−kt). Four ODEs describe this
system – for RTE,

R′d(t) = χΘe−νt − (µe−kt + λr)Rd(t),

R′h(t) = (1− χ)Θe−νt − (µe−kt + λr)Rh(t), (S9.1)

and for mature naive cells,

N ′d(t) = µe−ktRd(t)− λNd(t),

N ′h(t) = µe−ktRh(t)− λNh(t). (S9.2)

Thymic export Θ exp(−νt) and chimerism χ are defined as before. We required two new initial conditions, Rd(0) and Rh(0). As
before we assume the initial donor counts are proportional to the level of chimerism, χ, giving Rd(0) = χβRR0 and Nd(0) =
χβNN0 where R0 = Rd(0) + Rh(0) and similarly for N0. This mapping of the initial conditions to the common parameters β(.)

makes the rescaled donor fraction independent of χ as required for a global fit.

Equations S9.1 and S9.2 were solved numerically and used to construct the total count and rescaled donor fraction functions.
Coupled with the minimization procedure outlined in Section S5 we fit this model to the data (Figure S9.1, solid lines). It describes
the data comparably to the incumbent model (dashed lines), but the latter has significantly more statistical support by virtue of
having 5 parameters instead of 9 (∆AIC4 = 8.45, ∆AIC8 = 8.75).
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Figure S9.1: Comparison of the incumbent and RTE models. Normalized donor fractions and total naive
counts with RTE model (solid line) and incumbent model (dashed line) fits.
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