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Supplementary Figure 1 (a) Fluorescent microscope images of central 
and marginal regions of microfl uidic hydrogel scaffolds after loading 
FITC-Dextran. (b) Comparison of pore size in different regions of micro-
fl uidic hydrogel scaffolds (n = 55). (c) Histogram of microscale hydrogel 
pore size distribution of microfl uidic scaffolds (n = 100). (d) Histogram 
of sub-cellular hydrogel pore size distribution (n = 30).
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Supplementary Figure 2 Assumptions and calculation of total surface 
area for cell adhesion in a microfl uidic hydrogel scaffold in comparison 
with an empty chamber. 

Supplementary Figure 3 Comparison of cell seeding effi ciency depend-
ing on seeding methods and pre-coated BMSCs (n = 5,  *p < 0.05).

Supplementary Figure 4 Fluorescent image of live-dead staining after 
24 hours perfusion culture of human BMSCs in a microfl uidic hydrogel 
scaffold (Green: live, Red: dead).  Fluorescent image based analysis 
indicated 90 ± 2% cell viability (N = 3). 

Supplementary Figure 5 Comparison of human prostate tumor growth 
on 2D culture with and without human BMSCs. The result showed 
growth of PC3 tumor cells is independent of human BMSCs on a 2D 
substrate (n = 5).
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