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SUPPLEMENTAL DATA 

Figure S1. Various mechanisms for the formation of half-crossover events.  Related 

to Figure 4. (A) HCC with a rearranged donor chromosome and LYS2 in the recipient.  (i) 

Resolution of D-loop in BIR intermediate containing MMBIR mutation. (ii) Formation of 

HC event. (iii) Stabilization of broken donor by ectopic recombination or de novo 

telomere formation as represented by purple lines.  (B) HCC with a rearranged recipient 

chromosome and LYS2 in the donor. Steps (i and ii) are the same as in (A).  (iii-v) 

invasion of the broken donor into a HC product and resolution of the intermediate leading 

to the formation of secondary HC and a broken ADE1-containing fragment. (vi) 

Stabilization of ADE1-containing fragment by ectopic recombination or de novo telomere 

formation as represented by purple lines. 

 

Figure S2. Details of the distribution of DSB repair outcomes. Related to Figures 1 

and 3. The results of phenotypic analysis of DSB repair outcomes (A) and PFGE of 

representative Ade+ Leu- outcomes showing the percent rearrangements in chromosome 

III (represent HCC events) (B).  Data from (A) were used to calculate final distribution of 

DSB outcomes shown in (C) and in Figure 1B (See Experimental Procedures for details 

of calculations). (D) Phenotypic analysis of Lys+ mutants used to calculate the 

distribution of repair outcomes shown in Figure 3D. (E and F) Two examples of 

MMBIR events obtained in pif1Δ strains with reporters at MAT (E) and at 16kb (F) that 

contain imperfect microhomologies near the position of the first template switch.  

Imperfect microhomologies (include microhomologies located >1bp from the junctions 
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and mismatched bases) are underlined.  Colors of letters are like in Figure 3A. See Table 

S4, S5, and S6 for a full list and description of mutations. 

 

SUPPLEMENTAL EXPERIMENTAL PROCEDURES  

Yeast Strains  

All yeast strains (Table S1) are isogenic to AM1003 strain that is disomic for 

chromosome III (Deem et al., 2008).  In these strains, HO-induced DSBs were introduced 

into a truncated copy of chromosome III (recipient) by the addition of galactose. Control 

strains lacking an HO-endonuclease recognition cut site were obtained by plating on 

YEP-Gal media followed by selection of Ade+ Leu+ colonies, resulting from DSB repair 

by gene conversion (Deem et al., 2011).  Strains containing rev3Δ::BSD, rev1Δ::BSD, or 

tlc1Δ::BSD disruptions were constructed by transformation with a PCR-derived 

blasticidin (BSD) marker (TEF/BSD from Invitrogen) flanked by terminal sequences 

matching the first and last 80bp of the open reading frame of each gene (Wach et al., 

1994) and were confirmed by PCR and phenotypic analysis.  In the case of strains 

containing tlc1Δ::BSD disruption, freshly obtained independent transformants were used 

in experiments immediately upon confirmation of TLC1 disruption.  Strains containing 

rad30::bler were constructed by transformation with PCR-derived phleomycin-resistant 

(bler) cassette (Gueldener et al., 2002) flanked by terminal sequences matching the first 

and last 80bp of the open reading frame of RAD30 gene (Wach et al., 1994) and were 

confirmed by PCR.  Strains containing pif1Δ::KANMX were constructed by 

transformation with PCR-derived KANMX module similar to (Wilson et al., 2013). To 

construct strain AM2268 containing rev3Δ::URA3, the strain AM1523 containing 
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rev3Δ::KANMX (Deem et al., 2011) was transformed with M3927 plasmid similar to 

(Voth et al., 2003). Strains with pif1-m2 mutations were constructed using plasmid 

pVS31 (Schulz and Zakian, 1994) and confirmed by sequencing similar to (Wilson et al., 

2013).  Strains containing a catalytic mutation of REV1 (rev1-cd) were constructed using 

the “pop-in-pop out” method with plasmid pRS306-rev1-cd (Northam et al., 2014) that 

was digested with EcoRI for genomic integration (pop-in step) followed by selection of 

Ura- (pop-out step). Strains with rev1-cd mutation were confirmed by Sanger sequencing. 

 

Analysis of Chromosome III Structure 

Chromosome rearrangements were determined by physical analysis of chromosome III in 

Ade+Leu-Lys- and Ade+Leu-Lys+ strains using PFGE and hybridization with ADE1-, and 

ADE3-specific probes (Deem et al., 2008) and LYS2- specific probes (Saini et al., 2013).  

Rearrangements were defined as chromosomes that deviated from their expected size of 

355kb (donor chromosome) and 345kb (BIR repair product) (See Figure 3E for example 

of gel image and hybridization results).  

 

Distribution of DSB repair events  

To determine the distribution of DSB repair events among non-selected outcomes, yeast 

cultures were grown in leucine drop-out medium for ~20 hours and then diluted and 

plated on YEP-Gal plates similar to (Deem et al 2008).  Colonies that formed on YEP-

Gal plates were then replica plated onto appropriate omission media to determine the 

fraction of DSB repair events with the following phenotypes: Ade+ Leu+(GC), Ade-

white Leu- (HC), Ade-red Leu- (CL), and Ade+ Leu- (Figure S2A).  HC events included Ade-
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white Leu- outcomes as well as a portion of Ade+ Leu-.  The number of Ade+ Leu- HCs was 

assumed to equal the number of Ade-white Leu- outcomes based on random segregation 

during mitosis (similar to (Deem et al., 2008; Wilson et al., 2013; Smith et al., 2009)).  

Therefore, to determine total HC events, the number of Ade-white Leu- outcomes was 

multiplied by two and Ade+ Leu- events were then adjusted by subtracting the number of 

Ade-white Leu- colonies.  The remaining Ade+ Leu- outcomes included both HCC and BIR 

events, which were phenotypically indistinguishable and thus remained grouped together.  

The presence of HCCs in this group was verified for a representative set of Ade+ Leu- 

events by PFGE that detected rearrangements in chromosome III (Figure S2B).  

    

To determine the frequency of various DSB repair outcomes among Lys+ mutations, 

yeast were first grown on lysine drop-out media to obtain mutation rates, followed by 

replica plating of Lys+ colonies onto appropriate omission media to determine the 

phenotypes of the DSB repair outcomes. The fraction of each repair event was then 

multiplied by the Lys+ mutation rate (Figure 3D, S2D).  

 

The efficiency of Gal::HO induction was confirmed by determining the fraction of Ade+ 

Leu- events among Ade+ in all strains with a DSB cut site in at least three independent 

experiments per strain.  Ade+ colonies obtained from cells plated on adenine drop-out 

medium at 7hrs after the addition of galactose were replica-plated onto leucine drop-out 

plates and the proportion of Ade+ Leu- was determined using > 30 colonies per 

experiment (Table S7).     
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Analysis of Lys+ mutation spectra  

Lys+ mutation spectra were determined by amplification of a portion of the LYS2 gene 

followed by Sanger sequencing using primers described in (Deem et al 2011). Lys+ 

mutations were identified using the Codon Code Aligner DNA Sequence Analysis 

Program: http://www.codoncode.com/aligner/. Ade+Leu-Lys+ mutants were further 

analyzed by PFGE as described above.  
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