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A Formulation of SLOPE

We here provide proofs of some properties of the SLOPE optimization problem; we show that the
SLOPE regularizing function Jλ(b) is a norm and that the SLOPE proximal operator reduces to
the solution of the optimization problem equation (2.3).

A.1 Proof of Proposition 1.2

Proof It is clear that Jλ(b) = 0 if and only if b = 0, and that for any scalar t ∈ R, Jλ(tb) = |t|Jλ(b).
Thus it remains to prove that Jλ(b) is convex. For this, observe that by the Hardy-Littlewood-Pólya
inequality

Jλ(b) = max
π

p∑
i=1

λπ(i)|bi|,

where the maximum is over all permutations of p objects. Thus Jλ(b) is convex since it is a
maximum over a collection of convex functions.

A.2 Proof of Proposition 2.2

Proof It is enough to show that under Assumption 2.1, the solution x to equation (2.2) satisfies

x1 ≥ x2 ≥ · · · ≥ xp ≥ 0. (A.1)

Suppose that (A.1) does not hold so that there exists a pair of indices i < j such that xi < xj (and
yi > yj). Form a copy x′ of x with entries i and j exchanged. Letting f be the objective functional
in equation (2.2), we have

f(x)− f(x′) = 1
2(yi − xi)2 + 1

2(yj − xj)2 − 1
2(yi − xj)2 − 1

2(yj − xi)2.

This follows from the fact that the sorted `1 norm takes on the same value at x and x′ and that all
the quadratic terms cancel but those for i and j. This gives

f(x)− f(x′) = xjyi − xiyi + xiyj − xjyj = (xj − xi)(yi − yj) > 0,

which shows that the objective x′ is strictly smaller, thereby contradicting the optimality of x.
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B FDR Control Under Orthogonal Designs

In this section, we prove FDR control in the orthogonal design, namely, Theorem 1.1. As we have
seen in Section 1, the SLOPE solution reduces to

min
b∈Rp

1
2‖ỹ − b‖

2
`2 +

p∑
i=1

λi|b|(i),

where ỹ = X ′y ∼ N (β, Ip). From this, it is clear that it suffices to consider the setting in which
n = p and y ∼ N (β, Ip), which we assume from now on.

We are thus testing the p hypotheses Hi : βi = 0, i = 1, . . . , p and set things up so that the first
p0 hypotheses are null, i.e. βi = 0 for i ≤ p0. The SLOPE solution is

β̂ = arg min 1
2‖y − b‖

2
`2 +

p∑
i=1

λi|b|(i) (B.1)

with λi = Φ−1(1− iq/2p). We reject Hi if and only if β̂i 6= 0. Letting V (resp. R) be the number of
false rejections (resp. the number of rejections) or, equivalently, the number of indices in {1, . . . , p0}
(resp. in {1, . . . , p}) for which β̂i 6= 0, we have

FDR = E
[

V

R ∨ 1

]
=

p∑
r=1

E
[
V

r
1{R=r}

]
=

p∑
r=1

1

r
E

[
p0∑
i=1

1{Hi is rejected}1{R=r}

]
. (B.2)

The proof of Theorem 1.1 now follows from the two key lemmas below.

Lemma B.1. Let Hi be a null hypothesis and let r ≥ 1. Then

{y: Hi is rejected and R = r} = {y: |yi| > λr and R = r}.

Lemma B.2. Consider applying the SLOPE procedure to ỹ = (y1, . . . , yi−1, yi+1, . . . , yp) with
weights λ̃ = (λ2, . . . , λp) and let R̃ be the number of rejections this procedure makes. Then with
r ≥ 1,

{y: |yi| > λr and R = r} ⊂ {y : |yi| > λr and R̃ = r − 1}.

To see why these intermediate results give Theorem 1.1, observe that if Hi is a null, then

P(Hi rejected and R = r) ≤ P(|yi| ≥ λr and R̃ = r − 1)

= P(|yi| ≥ λr)P(R̃ = r − 1)

=
qr

p
P(R̃ = r − 1),

where the inequality is a consequence of the lemmas above and the first equality follows from the
independence between yi and ỹ. Plugging this inequality into equation (B.2) gives

FDR =

p∑
r=1

1

r

p0∑
i=1

P(Hi rejected and R = r) ≤
∑
r≥1

qp0
p

P(R̃ = r − 1) =
qp0
p
,

which finishes the proof.
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B.1 Proof of Lemma B.1

We begin with a lemma we shall use more than once, and which characterizes the solution to
equation (2.3).

Lemma B.3. Consider a pair of nonincreasing and nonnegative sequences y1 ≥ y2 ≥ · · · ≥ yp ≥ 0,

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, and let b̂ be the solution to

minimize f(b) = 1
2‖y − b‖

2
`2

+
∑p

i=1 λibi
subject to b1 ≥ b2 ≥ · · · ≥ bp ≥ 0.

If b̂r > 0 and b̂r+1 = 0, then for every j ≤ r, it holds that

r∑
i=j

(yi − λi) > 0 (B.3)

and for every j ≥ r + 1,
j∑

i=r+1

(yi − λi) ≤ 0. (B.4)

Proof To prove equation (B.3), consider a new feasible—i.e.nonnegative and nonincreasing—
sequence b?, which differs from b̂ only by subtracting a small positive scalar h < b̂r from b̂j , . . . , b̂r.
Now

f(b?)− f(b̂) = h
r∑
i=j

(yi − λi − b̂i) + h2
r∑
i=j

1
2 .

Taking the limit as h goes to zero, the optimality of b̂ implies that
∑r

i=j(yi − λi − b̂i) ≥ 0, which
gives

r∑
i=j

(yi − λi) ≥
r∑
i=j

b̂i > 0.

For the second claim equation (B.4), consider a feasible sequence b?, which differs from b̂ by
replacing b̂r+1, . . . , b̂j with a positive scalar 0 < h < b̂r. Now observe that

f(b?)− f(b̂) = −h
j∑

i=r+1

(yi − λi) + h2
j∑

i=r+1

1
2 .

The claim follows from the optimality of b̂.

It is now straightforward so see how these simple relationships give Lemma B.1. Observe that
when R = r, we must have |y|(r) > λr and |y|(r+1) ≤ λr+1. Hence, if H1 is rejected, it must
hold that |y1| ≥ |y|(r) > λr. This shows that {H1 is rejected and R = r} ⊂ {|y1| > λr and R = r}.
Conversely, assume that |y1| > λr and R = r. Then H1 must be rejected since |y1| > |y|(r+1). This
shows that {H1 is rejected and R = r} ⊃ {|y1| > λr and R = r}.
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B.2 Proof of Lemma B.2

We assume without loss of generality that y ≥ 0 (see Section 2.2). By assumption the solution
to equation (B.1) with λi = Φ−1(1− iq/2p) has exactly r strictly positive entries, and we need to
show that when y1 is rejected, the solution to

min J(b̃) :=

p−1∑
i=1

1
2(ỹi − b̃i)2 +

p−1∑
i=1

λ̃i|b̃|(i) (B.5)

in which λ̃i = λi+1 has exactly r − 1 nonzero entries. We prove this in two steps:

(i) The optimal solution b̂ to equation (B.5) has at least r − 1 nonzero entries.

(ii) The optimal solution b̂ to equation (B.5) has at most r − 1 nonzero entries.

B.2.1 Proof of (i)

Suppose by contradiction that b̂ has fewer than r − 1 entries; i.e., b̂ has j − 1 nonzero entries with
j < r. Letting I be those indices for which the rank of ỹi is between j and r− 1, consider a feasible
point b as in the proof of Lemma B.3 defined as

bi =

{
h i ∈ I,
b̂i otherwise;

here, the positive scalar h obeys 0 < h < b(j−1). By definition,

J(b)− J(b̂) = −h
r−1∑
i=j

(ỹ(i) − λ̃i) + h2
r−1∑
i=j

1
2 .

Now ∑
j≤i≤r−1

ỹ(i) − λ̃i =
∑

j+1≤i≤r
ỹ(i−1) − λi ≥

∑
j+1≤i≤r

y(i) − λi > 0.

The first equality follows from λ̃i = λi+1, the first inequality from y(i) ≤ ỹ(i−1) and the last

from equation (B.3). By selecting h small enough, this gives J(b) < J(b̂), which contradicts the
optimality of b̂.

B.2.2 Proof of (ii)

The proof is similar to that of (i). Suppose by contradiction that b̂ has more than r − 1 entries;
i.e. b̂ has j nonzero entries with j ≥ r. Letting I be those indices for which the rank of ỹi is between
r and j, consider a feasible point b as in the proof of Lemma B.3 defined as

bi =

{
bi − h i ∈ I
b̂i otherwise;

here, the positive scalar h obeys 0 < h < b(j). By definition,

J(b)− J(b̂) = h

j∑
i=r

(ỹ(i) − λ̃i − b̂(i)) + h2
j∑
i=r

1
2 .
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Now ∑
r≤i≤j

(ỹ(i) − λ̃i) =
∑

r+1≤i≤j+1

(y(i) − λi) ≤ 0.

The equality follows from the definition and the inequality from equation (B.4). By selecting h
small enough, this gives J(b) < J(b̂), which contradicts the optimality of b̂.

C Algorithmic Issues

C.1 Duality-based stopping criteria

To derive the dual of equation (1.10) we first rewrite it as

minimize
b,r

1
2r
′r + Jλ(b) subject to Xb+ r = y.

The dual is then given by
maximize

w
L(w),

where

L(w) := inf
b,r
{12r

′r + Jλ(b)− w′(Xb+ r − y)}

= w′y − sup
r
{w′r − 1

2r
′r} − sup

b
{(X ′w)′b− Jλ(b)}.

The first supremum term evaluates to 1
2w
′w by choosing r = w. The second term is the conjugate

function J∗ of J evaluated at v = X ′w, which can be shown to reduce to

J∗λ(v) := sup
b
{v′b− Jλ(b)} =

{
0 v ∈ Cλ,
+∞ otherwise,

where the set Cλ is the unit ball of the dual norm to Jλ(·). In details,

w ∈ Cλ ⇐⇒
∑
j≤i
|w|(j) ≤

∑
j≤i

λj for all i = 1, . . . , p.

The dual problem is thus given by

maximize
w

w′y − 1
2w
′w subject to X ′w ∈ Cλ.

The dual formulation can be used to derive appropriate stopping criteria. At the solution we have
w = r, which motivates estimating a dual point by setting ŵ = r =: y − Xb. At this point the
primal-dual gap at b is the difference between the primal and dual objective:

δ(b) = (Xb)′(Xb− y) + Jλ(b).

However, ŵ is not guaranteed to be feasible, i.e., we may not have ŵ ∈ Cλ. Therefore we also need
to compute a level of infeasibility of ŵ, for example

infeasi(ŵ) = max
{

0, max
i

∑
j≤i

(|ŵ|(j) − λj)
}
.

The algorithm used in the numerical experiments terminates whenever both the infeasibility and
primal-dual gap are sufficiently small. In addition, it imposes a limit on the total number of
iterations to ensure termination.
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C.2 Proof of Lemma 2.3

It is useful to think of the prox as the solution to the quadratic program equation (2.3) and we
begin by recording the Karush-Kuhn-Tucker (KKT) optimality conditions for this QP.

Primal feasibility: x1 ≥ x2 ≥ · · · ≥ xn ≥ 0.

Dual feasibility: µ = (µ1, . . . , µn) obeys µ ≥ 0.

Complementary slackness: µi(xi − xi+1) = 0 for all i = 1, . . . , n (with the convention xn+1 = 0).

Stationarity of the Lagrangian: with the convention that µ0 = 0,

xi − yi + λi − (µi − µi−1) = 0.

We now turn to the proof of the second claim of the lemma. Set x = (y − λ)+, which by
assumption is primal feasible, and let i0 be the last index such that yi − λi > 0. Set µ1 = µ2 =
· · · = µi0 = 0 and for j > i0, recursively define

µj = µj−1 − (yj − λj) ≥ 0.

Then it is straightforward to check that the pair (x, µ) obeys the KKT optimality conditions. Hence
x is solution.

Consider now the first claim. We first argue that the prox has to be constant over any monotone
segment of the form

yi − λi ≤ yi+1 − λi+1 ≤ · · · ≤ yj − λj .

To see why this is true, set x = (y;λ) and suppose the contrary: then over a segment as above,
there is k ∈ {i, i+ 1, . . . , j−1} such that xk > xk+1 (we cannot have a strict inequality in the other
direction since x has to be primal feasible). By complementary slackness, µk = 0. This gives

xk = yk − λk − µk−1
xk+1 = yk+1 − λk+1 + µk+1.

Since yk+1 − λk+1 ≥ yk − λk and µ ≥ 0, we have xk ≤ xk+1, which is a contradiction.
Now an update replaces an increasing segment as in equation (2.4) with a constant segment

and we have just seen that both proxes must be constant over such segments. Now consider the
cost function associated with the prox with parameter λ and input y over an increasing segment
as in equation (2.4), ∑

i≤k≤j

{
1
2(yk − xk)2 + λkxk

}
. (C.1)

Since all the variables xk must be equal to some value z over this block, this cost is equal to∑
i≤k≤j

{
1
2(yk − z)2 + λkz

}
=
∑
k

1
2(yk − ȳ)2 +

∑
i≤k≤j

{
1
2(ȳ − z)2 + λ̄z

}
=
∑
k

1
2(yk − ȳ)2 +

∑
i≤k≤j

{
1
2(y+k − z)

2 + λ̄+k z
}
,
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where ȳ and λ̄ are block averages. The second term in the right-hand side is the cost function
associated with the prox with parameter λ+ and input y+ over the same segment since all the
variables over this segment must also take on the same value. Therefore, it follows that replacing
each appearance of block sums as in equation (C.1) in the cost function yields the same minimizer.
This proves the claim.
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