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A ADDITIONAL PROPERTIES OF THE MODEL

A. Additional Properties of the Model

In Section A.1, we establish sufficient conditions for those who select into treatment to

have the highest benefit and the lowest cost of treatment, and show testable restrictions

that follow from those conditions. In Section A.2, we establish sufficient conditions on

our model for measurable separability of X and P (X,Z) as invoked in Assumption (A-5)

and used in Theorem 2 in the text. The proof of all theorems are contained in Appendix

B.

A.1. Properties of Marginal Benefits and Marginal Costs.

The marginal surplus parameter is biggest for those who most want to participate in

the program. Using Equation (3.3), we thus have that the average surplus among the

treated is higher than the unconditional average surplus of treatment. In other words,

given our maintained assumptions, SMTE(x, uS) is monotonically decreasing in uS, and

STT (x) > SATE(x). While it might seem intuitive that that those who most want to

participate in the program would have the highest benefit and the lowest cost, neither

statement need be true without further restrictions. The following Theorem provides

sufficient conditions under which these intuitive properties for benefits and costs will

hold.

Theorem 3. Assume that Equations (2.1)–(2.4) and our Assumptions (A-1)–(A-4) hold.

1. Suppose that UC ⊥⊥ U1 − U0. Then CTT (z) ≤ CATE(z), BTT (x) ≥ BATE(x).

2. Suppose that UC ⊥⊥ U1 − U0, and that UC and U1 − U0 have log concave densities.

Then CMTE(z, uS) is monotonically increasing in uS and BMTE(x, uS) is monoton-

ically decreasing in uS.

The proof of Theorem 3 is contained in Appendix B. Results of this theorem are

intuitive. If the unobservables related to the cost and benefit are independent, then the

average benefit among those who select into treatment is larger than the unconditional

average benefit. At the same time, the average cost among those who select into treatment
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A.1 Marginal Effects A ADDITIONAL PROPERTIES OF THE MODEL

is lower than the unconditional average cost. In other words, under independence of the

unobservables related to benefits and costs, it is the high benefit and low cost individuals

who select into treatment in the generalized Roy model. Part (2) of the theorem state

that, under a regularity condition, the expected gain is decreasing while the expected

cost is increasing in US. Note that the normal density as well as many other standard

densities are log concave.1

We now derive testable implications of E(Y |X = x, P = p) as a function of p that

result from additional restrictions including those developed in Theorem 3.

Theorem 4. Assume that Equations (2.1)–(2.4) and our Assumptions (A-1)–(A-4) hold.

1. Suppose that U1 − U0 is degenerate. Then E(Y |X = x, P = p) is linear in p.

2. Suppose U1 − U0 ⊥⊥ UC. For a fixed x, consider a line a(x) + b(x)p, where

a(x) = E(Y |X = x, P (X,Z) = 0) and b(x) = E(Y |X = x, P (X,Z) = 1) −

E(Y |X = x, P (X,Z) = 0). Then E(Y |X = x, P (X,Z) = p) ≥ a(x) + b(x)p for all

p ∈Supp(P |X = x).

3. Suppose U1 − U0 ⊥⊥ UC, and suppose U1 − U0 and UC have log concave densities.

Then E(Y |X = x, P (X,Z) = p) is a concave function of p.

The proof of Theorem 4 is contained in Appendix B.

Remark A.1. The conditions of Theorem 3 provide sufficient conditions for the stated

results to hold. The conditions are not necessary. For example, suppose that (U1, U0, UC)

is distributed joint normal. Then it can easily be shown that CMTE(z, uS) is monoton-

ically increasing in uS if and only if Var(UC) > Cov(UC , U1 − U0), and BMTE(x, uS) is

monotonically decreasing in uS if and only if Var(U1 − U0) > Cov(UC , U1 − U0). Thus, if

(U1, U0, UC) is distributed joint normal, than CMTE(z, uS) can be monotonically increas-

ing in uS and BMTE(x, uS) monotonically decreasing in uS even if unobserved benefits

and costs are correlated, as long as they are not correlated too strongly.

1Heckman and Honoré (1990) exploit the restriction of log-concave density functions for the disturbance
terms in a Roy model with zero costs. See Bagnoli and Bergstrom (2005) for a review of log concave
densities and economic applications.
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A.2 Measurable Separability A ADDITIONAL PROPERTIES OF THE MODEL

A.2. Measurable Separability of X and P (X,Z)

We now show sufficient conditions for X and P (X,Z) ≡ FV (µS(X,Z)) to be measurably

separated as invoked in Assumption (A-5) in the text. Consider the following assump-

tions:

(B-1) X can be partitioned as (X(d), X(c))′, where X(d) is a discrete random vector and

X(c) is a K−dimensional continuous random vector. Define X (d) to be the support of the

distribution of X(d). For all x(d) ∈ X (d), the distribution of (X(c), µS(X,Z)) conditional

on X(d) = x(d) is absolutely continuous with respect to Lebesgue measure on <K+1, with

a density whose support is connected and any point in the interior of its support has a

neighborhood such that the density is strictly positive within it.

(B-2) Let Sx(d) denote the support of the distribution of µS(X,Z) conditional on X(d) =

x(d). Then, for any x̃(d), x̄(d) ∈ X (d), there exists a sequence x
(d)
1 , ..., x

(d)
J in X (d) with

x
(d)
1 ≡ x̃(d), x

(d)
J ≡ x̄(d), such that S

x
(d)
j
∩S

x
(d)
j+1

contains an open interval for j = 1, ..., J−1.

(B-3) V has a continuous, everywhere positive density with respect to Lebesgue measure.

Assumption (B-1) strengthens Assumption (A-2), while Assumption (B-3) strengthens

Assumption (A-3). The requirement that X and Z both contain at least one continuous

element are necessary conditions for Assumption (A-1) to hold. Assumption (B-2) is a

support condition, which allows the support of the distribution of µS(X,Z) conditional

on the discrete covariates X(d) to depend on X(d), while requiring overlap in the supports

of the conditional distributions. We now show that these three assumptions are sufficient

for X and P (X,Z) ≡ FV (µS(X,Z)) to be measurably separated. Our proof relies upon

Theorem 2 of Florens et al. (2008). In particular, we show that, under Assumptions

(B-1) and (B-3), the conditions of Florens et al. (2008) are satisfied for X and P (X,Z)

conditional on the discrete covariates, so that X and P (X,Z) are measurably separated

conditional on the discrete covariates. Assumption (B-2) allows us to piece together each

conditional statement to conclude that X and P (X,Z) are measurably separated.
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A.2 Measurable Separability A ADDITIONAL PROPERTIES OF THE MODEL

Theorem 5. Suppose that Assumptions (B-1), (B-2), and (B-3) hold. Then X and

P (X,Z) are measurably separated.

The proof of the theorem is contained in Appendix B.
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B PROOFS

B. Proofs

Theorem 2

Proof. Consider part (i) of the theorem. Let µ10(·) = µ1(·) − µ0(·), and let Υ(p) =

E(U1 − U0 | US = p). From our previous analysis, we have

∂

∂p
E(Y |X = x, P = p) = µ10(x) + Υ(p) a.e. (x, p).

Let (µ∗10,Υ
∗) denote candidate functions that also satisfy Equation (B). We then have

µ∗10(x)−µ10(x) = Υ(p)−Υ∗(p) for a.e. (x, p). By the rank condition (A-5), we have that,

for some constant C: µ∗10(x)− µ10(x) = C for a.e. x, and Υ∗(p)−Υ(p) = −C for a.e. p.

We thus have that µ∗10(x) + Υ∗(p) = µ10(x) + Υ(p) = BMTE(x, p) for a.e. x and a.e. p.

We have thus established identification of BMTE(x, p) for (x, p) ∈ Supp(X) × Supp(P ).

The same argument mutatis mutandis shows identification of CMTE(z, uS) for (z, uS) ∈

Supp(Z) × Supp(P ), and we thus have identification of SMTE(x, z, uS) for (x, z, uS) ∈

Supp(X)× Supp(Z)× Supp(P ). Parts (ii) and (iii) of the theorem now follow using part

(i) of the theorem and the representation of the ATE and TT parameters as integrals of

the MTE parameters.

Theorem 3

Proof. Assertion (1) was proved in the discussion of the theorem in Appendix A. For As-

sertion (2), first consider the cost parameters. CATE(z)−CTT (z) = E(UC)−E(UC |Z =

z,D = 1), and E(UC |Z = z,D = 1) =
∫
E(UC |Z = z,X = x, US ≤ P (x, z))dFX|Z,D(x|z, 1) =∫

E(UC |US ≤ P (x, z))dFX|Z,D(x|z, 1) using (X,Z) ⊥⊥ (UC , US). Thus, using that US =

FV (V ), it will be sufficient to show that E(UC |V ≤ t) ≤ E(UC) for all t, and thus suffi-

cient to show that Pr[UC ≤ s|UC − (U1 − U0) ≤ t] ≥ Pr[UC ≤ s] for all s. Using Bayes’

rule, this is equivalent to Pr[UC − (U1 − U0) ≤ t|UC ≤ s] ≥ Pr[UC − (U1 − U0) ≤ t],

and this last assertion can now easily be shown using UC ⊥⊥ (U1 − U0). We can thus

7



B PROOFS

conclude that CATE(z)−CTT (z) ≥ 0. The same argument mutatis mutandis shows that

BATE(x) − BTT (x) ≤ 0. Now consider Assertion (3). The densities of UC and U1 − U0

being log concave is equivalent to their densities being Polya frequency functions of or-

der 2 (PF2) (Karlin, 1968). Using that U1 − U0 ⊥⊥ UC , one can now easily verify that

(UC , UC−(U1−U0)) and (−(U1−U0), UC−(U1−U0)) have joint densities that are totally

positive of order 2 (TP2). By Joe (1997) (Theorems 2.2, 2.3), (UC , UC − (U1 − U0)) and

(−(U1 − U0), UC − (U1 − U0)) having TP2 densities implies that UC and −(U1 − U0) are

stochastically increasing in UC − (U1−U0) and thus stochastically increasing in US using

that US is a strictly monotonic function of UC − (U1 − U0). Thus E(UC |US = uS) is

increasing in uS while E(U1 − U0|US = uS) is decreasing in uS, establishing the asser-

tion.

Theorem 4

Proof. Assertion (1) follows from Equation (4.1) and BMTE(x, uS) = µ1(x) − µ0(x) if

U1 −U0 is degenerate. Assertion (2) follows from E(Y |X = x, P (X,Z) = 1)−E(Y |X =

x, P (X,Z) = 0) = BATE(x), [E(Y |X = x, P (X,Z) = p)− E(Y |X = x, P (X,Z) = 0)] /p =

E(B|X = x, P (X,Z) = p,D = 1), and that BATE(x) ≤ E(B|X = x, P (X,Z) = p,D =

1) by the arguments used to prove Assertion (2) of Theorem 3. Assertion (3) follows from

Equation (4.1) and Assertion (3) of Theorem 3.

Theorem 5

Proof. Fix an arbitrary x(d) ∈ X (d). Using that P (X,Z) = FV (µS(X,Z)), Assumptions

(B-1) and (B-3) imply that the distribution of (X,P (X,Z)) conditional on X(d) = x(d) is

absolutely continuous with respect to Lebesgue measure and that any point in the the in-

terior of its support has a neighborhood such that the density is strictly positive within it.

The mapping from (X,µS(X,Z)) to (X,P (X,Z)) is continuous, and thus, using Assump-

tion (B-1), the interior of the support of the conditional distribution of (X,P (X,Z)) is

connected. Since the interior of the conditional distribution of (X,P (X,Z)) is a connected

8



B PROOFS

open subset of a Euclidean space, it is path connected. It now follows from Theorem 2 of

Florens et al. (2008) that X and P (X,Z) are measurably separated conditional on X(d).

Suppose h(X) = g(P (X,Z)) a.s.. Then h(X) = g(P (X,Z)) a.s. conditional on X(d).

Since we have shown that X and P (X,Z) are measurably separated conditional on X(d),

we have that g(P (X,Z)) a.s. equals a constant conditional on X(d). Let Px(d) denote

the support of the distribution of P (X,Z) conditional on X(d) = x(d). We have that

g is (a.s.) constant on Px(d) for all x(d) ∈ X (d). Consider any x̃(d), x̄(d) ∈ X (d). Using

Assumption (B-2), and that P (X,Z) = FV (µS(X,Z)) is a strictly increasing function of

µS(X,Z) by Assumption (B-3), there exists a sequence x
(d)
1 , ..., x

(d)
J in X with x

(d)
1 ≡ x̃(d),

x
(d)
J ≡ x̄(d), such that P

x
(d)
j
∩ P

x
(d)
j+1

contains an open interval for j = 1, ..., J − 1. We

have that g is (a.s.) constant on P
x
(d)
1

, is (a.s.) constant on P
x
(d)
2

, and, since P
x
(d)
j
∩P

x
(d)
j+1

is non-negligible, g is (a.s.) constant on P
x
(d)
1
∪ P

x
(d)
2

. Iterating in this way along the

sequence, it follows that g is (a.s.) constant on Px̃(d) ∪Px̄(d) . Since this holds for arbitrary

x̃(d), x̄(d) ∈ X (d), it follows that g is (a.s.) constant on P , and therefore g and thus h are

a.s. equal to a constant.
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C DATA DESCRIPTION

C. Data Description

Our sample consists of white males from the National Longitudinal Survey of Youth of

1979 (NLSY79).2 We define participation in college as having attended some college or

having completed more than 12 grades in school. The wage variable that is used is an

average of deflated (to 1983) non-missing hourly wages reported in 1989, 1990, 1991, 1992

and 1993. We delete all wage observations that are below 1 or above 100. Experience

is actual work experience in weeks (we divide it by 52 to express it as a fraction of a

year) accumulated from 1979 to 1991 (annual weeks worked are imputed to be zero if

they are missing in any given year). The remaining variables that we include in the X

and Z vectors are mother’s years of schooling, number of siblings, urban residence at 14,

schooling corrected AFQT, dummies indicating the year of birth, the presence of a four-

year college in the county of residence at age 14 (Kling, 2001)3, average tuition in public

four year colleges in the county of residence at age 17 (deflated to 1993), and local average

wages in the county of residence at 17. Permanent local wages are computed by location

of residence at 17 (county level), by averaging values of (deflated) local labor market

variables between 1973 and 2000. County wages correspond to the average wage per job

in the county constructed using data from the Bureau of Economic Analysis, deflated to

2000. Annual records on tuition, enrollment, and location of all public four year colleges in

the United States were constructed from the Department of Education’s annual Higher

Education General Information Survey and Integrated Postsecondary Education Data

System “Institutional Characteristics” surveys. By matching location with county of

residence, we determined the presence of four-year colleges. Tuition measures are taken

as enrollment weighted averages of all public four-year colleges in a person’s county of

residence (if available) or at the state level if no college is available. County and state of

residence at 17 are not available for everyone in the NLSY, but only for the cohorts born

in 1962, 1963, and 1964 (age 17 in 1979, 1980 and 1981). However, county and state of

residence at age 14 is available for most respondents. Therefore, we impute location at 17

2For a description of the NLSY79, see Bureau of Labor Statistics (2001).
3The distance variable we use is the one used in Kling (2001), available at the Journal of Business and

Economics Statistics website.
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C DATA DESCRIPTION

to be equal to location at 14 for cohorts born between 1957 and 1962 unless location at

14 is missing, in which case we use location in 1979 for the imputation. Many individuals

report having obtained a bachelors degree or more and, at the same time, having attended

only 15 years of schooling (or less). We recode years of schooling for these individuals

to be 16. This variable is only used to annualize the returns to schooling. We divide

the returns to college by 4, which is the average difference in years of schooling between

individuals in each schooling group. The NLSY79 has an oversample of poor whites which

we exclude from this analysis. We also exclude the military sample. To remove the effect

of schooling on AFQT we implement the procedure of Hansen et al. (2004).
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