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Background and Purpose: Developing improved methods for
analysis of the modified Rankin Scale (mRS) remains a critical
issue for the stroke research community. A recently proposed
permutation-based approach is assumption-free and easily
interpretable but computationally intensive and does not
provide confidence intervals to quantify the precision of the
effect size estimate. We aimed to develop a method to over-
come these limitations.
Methods: We propose a procedure using generalized odds
ratios to estimate the odds that a patient who received the
investigational treatment will have a better outcome than a
patient receiving standard treatment. This approach was vali-
dated against the permutation method using hypothetical
clinical trial scenarios of neuroprotective effect, early recanali-
zation effect, late recanalization effect, and random benefit.
Results: The generalized odds ratio approach had strong
agreement with the permutation approach provided sample
size was >15 patients per treatment arm. Simulation estab-
lished that the confidence intervals generated were accurate.
Ignoring patient pairs with tied mRS scores overestimates the
treatment effect compared with splitting tied mRS scores.
Conclusions: In addition to all the advantages of the recently
proposed permutation-based approach, our method generates
confidence intervals without the need for intensive computa-
tional power. The resulting generalized odds ratios are particu-
larly suitable for inclusion in meta-analyses and have a simple
and intuitive connection with the number-needed-to-treat
measure.
Key words: clinical trial, epidemiology, outcome and process assessment,
randomized controlled trials, statistical analysis, stroke

Introduction

The modified Rankin Scale (mRS) is the favored measure of func-

tional outcome in phase 3 stroke trials (1). The mRS is a 7-point

scale ranging from 0 (no symptoms) to 6 (death) (Table 1). Tra-

ditionally, the scale has been dichotomized as 0–1 versus 2–6

(‘proportion with disability-free outcome’) or 0–2 vs 3–6 (‘pro-

portion with independent outcome’). This is easy to understand

but ignores shifts between individual levels of the mRS that may

be clinically relevant.

Several methods of ordinal analysis of the full mRS have been

proposed, with varying statistical properties (2–6). The Cochran–

Mantel–Haenszel test (7) provides a P-value but not an associated

treatment effect size measure. Proportional-odds logistic regres-

sion modeling (8) relies heavily on the assumption of proportion-

ality of odds (also known as parallel regression assumption),

which is often not satisfied in stroke trials (9).

A rank-based Mann–Whitney test provides a straightforward

method for analysis of the mRS (10). Recently, Howard et al. (11)

proposed a permutation-based approach for analysis of mRS that

is closely related to the Mann–Whitney U-test (Wilcoxon rank-

sum test). The test addresses the following question: ‘If a patient is

chosen at random from each treatment group and if they have

different outcomes, what is the chance the patient who received

the investigational treatment will have a better outcome than the

patient receiving standard treatment?’ This differs from the stan-

dard Wilcoxon–Mann–Whitney (WMW) approach in the treat-

ment of tied observations. WMW assumes that half the tied scores

had a lower mRS score for the patient assigned to the first treat-

ment and half had a lower mRS score for the patient assigned to

the second treatment. Howard et al. (11) argue that although the

WMW approach is attractive analytically, including ties obscures

the interpretation of the effect size. However, although it is

assumption-free and highly clinically interpretable, this approach

is computationally intensive; does not provide confidence inter-

vals (CIs), which are an important indicator of study precision;

and does not directly facilitate meta-analysis.

We aimed to develop and validate an assumption-free ordinal

analysis of mRS using generalized odds ratios (GenOR) to

provide an easily interpretable measure of effect size with CIs and

number needed to treat (NNT), in addition to facilitating meta-

analysis of studies.

Methods

We propose an analytical procedure that relies on GenOR (12).

Instead of estimating probability per Howard et al.’s (11)

approach, this procedure estimates the odds that for two patients

chosen at random with one from each treatment group, the

patient who received the investigational treatment will have a

better outcome than the patient receiving standard treatment

(illustrated in Fig. 1). The aim was to provide the additional ben-

efits of confidence limits and P-values without being computa-

tionally demanding and to allow direct meta-analysis of studies
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using the GenOR. A detailed description of the GenOR approach

is provided in the online supplement.

Accuracy was validated by demonstrating that the GenOR pro-

vides both bias-free estimation of the true population GenOR and

the correct coverage of 95% CIs and by comparing the perfor-

mance of the GenOR with that of the permutation-based proce-

dure of Howard et al. (11) under various treatment effect

conditions using simulated data sets corresponding to four hypo-

thetical clinical trial scenarios created by Saver and Gornbein (9):

1. Neuroprotective: mild benefits experienced across all ranges of

stroke severity

2. Early recanalization effect: substantial benefits across all ranges

of stroke severity

3. Late recanalization effect: substantial benefits across wide

range of stroke severity but with limited ability to achieve fully

normal outcome

4. Random benefits: benefits clustered at unexpected health state

transitions

The distributions were designed by Saver and Gornbein (9) to

have 80% power at α = 0·05 for either WMW U-test or χ2-test for

two proportions, whichever had greatest power, at n = 600 per

treatment arm. We created datasets that followed these treatment

patterns and used them as source distributions for our simulation

experiments (Fig. 2).

The agreement between the results produced by the analytical

GenOR and the permutation method proposed by Howard et al.

(11) was assessed using Lin’s concordance coefficient (CC) (13)

and further validated using reduced major axis regression (14).

Reduced major axis regression allows separation of the disagree-

ment into fixed and proportional components. If both methods

were to produce identical readings, the corresponding scatter plot

would fall onto the diagonal line of ‘perfect concordance’. In cases

when two methods provide readings that differ by a similar

amount (fixed bias), the intercept of the reduced major axis

Table 1 Modified Rankin Scale

Score Description

0 No symptoms at all
1 No significant disability despite symptoms; able to perform

all usual duties and activities
2 Slight disability; unable to perform all previous activities,

but able to take care of self without assistance
3 Moderate disability; requiring some help, but able to walk

without assistance
4 Moderately severe disability; unable to walk without

assistance and unable to attend to own bodily needs
without assistance

5 Severe disability; bedridden, incontinent, and requiring
constant nursing care and attention

6 Dead

mRS 0

0 20

Treatment
Better

Dropping Ties

In our example: In our example:
4858
——
3446

# of better pairs + 0·5 (# of tied pairs)
————————————————–
# of worse pairs + 0·5 (# of tied pairs)

GenOR =           = 1·41
4858 + 0·5 (1696)
——————–—
3446 + 0·5 (1696)

GenOR =                              = 1·33

# of better pairs
———————
# of worse pairs

G
en

O
R

Splitting Ties

4858 3446 1696 10000

Treatment
Worse

Tied Total

40 60 80 100

C
on

tr
ol

Control
0

(n = 14)

0
(n = 20)

1
(n = 23)

2
(n = 19)

3
(n = 16)

4
(n = 9)

5/6
(n = 13)

280

322

266

224

126

182

Tied

Tied

Tied

Tied

Tied

Tied

340

391

323

272

153

221

440

506

418

352

198

286

320

368

304

256

144

208

260

299

247

208

117

169

360

414

342

288

162

234

1
(n = 17)

2
(n = 22)

3
(n = 16)

4
(n = 13)

5/6
(n = 18)

T
re

at
m

en
t

T
re

at
m

en
t

Control

Treatment is better
than Control

Control is better
than Treatment

0
(n = 14)

0
(n = 20)

1
(n = 23)

2
(n = 19)

3
(n = 16)

4
(n = 9)

5/6
(n = 13)

1
(n = 17)

2
(n = 22)

3
(n = 16)

4
(n = 13)

5/6
(n = 18)

T
re

at
m

en
t

mRS 1 mRS 2 mRS 3 mRS 4 mRS 5/6

Fig. 1 Conceptual outline of generalized odds ratio (GenOR) approach using a hypothetical study with 100 subjects per arm. All pairs with better outcome
in the treatment group are weighed against all pairs with worse outcome in the treatment group, and ties can be ‘split’ (in this case 50:50) or ‘dropped’
(excluded from consideration). Excluding ties inflates the estimated GenOR compared to splitting ties.
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regression line will differ from zero by that amount. If, on the

other hand, the degree of disagreement changes with the

magnitude of the readings, the slope of the reduced major

axis regression line will differ from that of the line of perfect

concordance, which is indicative of the presence of proportional

bias.

The procedure for generating GenORs together with the cor-

responding 95% CIs was coded in Stata statistical software (v.13

IC, StataCorp, College Station, TX, USA). Two versions of GenOR

are considered in the paper, as discussed in the Online Supple-

ment: the original Agresti GenOR and the WMW GenOR. The

difference between these two GenOR measures is in the way the

tied observations are treated: while the Agresti GenOR ignores

(‘drops’) the ties, the WMW GenOR splits the tied observations

equally between the two treatment groups.

To investigate the ability of GenOR to produce an unbiased

estimate of the true population GenOR, as well as corresponding

95% CIs that have correct coverage (i.e. truly contain the true

population value in 95% of cases), we randomly generated 10 000

independent samples of n = 600 per treatment arm from each of

the four hypothetical treatment effect distributions. The value

10 000 was chosen as it provided a sufficient number to return a

normal sampling distribution of effect measures, while the

sample size of 600 subjects per treatment arm was chosen based

on power considerations.

To validate the performance of the analytical GenOR against

that of the permutation method proposed by Howard et al. (11),

the following series of simulations were performed:

1. Assessment of the agreement between the P-values generated

by the analytical and permutation methods as a function of

number of permutations: 50 independent samples of 600 patients

per treatment arm from each of the four hypothetical treatment

effect distributions for the scenarios with 10, 100, 1000, and

10 000 permutations required by Howard’s method were gener-

ated, and Lin’s CCs for each permutation scenario were calcu-

lated. The number of permutations was specifically experimented

with in order to investigate how many permutations in Howard’s

method would be required to achieve convergence between the

permutation and the analytical results.

2. Assessment of the agreement between the P-values generated

by the analytical and permutation methods (30 000 permutations

per independent sample) as a function of sample size: 200 inde-

pendent samples from each of the four hypothetical treatment

effect distributions were generated for sample sizes of 5, 10, 15, 25,

38, 50, and 100 subjects per treatment arm, and Lin’s CC as well

as reduced major axis regression slope and intercept were calcu-

lated for each sample size value.

3. Assessment of the agreement for stratified analysis between

analytical and permutation methods (5 000 permutations per

independent sample): 50 independent samples from each of the

four hypothetical treatment effect distributions were generated

for a sufficiently large sample size of 100 subjects per treatment

arm, and Lin’s CC as well as reduced major axis regression slope

and intercept were calculated.

Finally, to estimate the degree of the disagreement between the

Agresti GenOR (‘ignoring/dropping ties’ strategy) and WMW

GenOR (‘splitting ties’ strategy) as a function of the sample size

(values: 5, 10, 15, 25, 38, 50, and 100 subjects per treatment arm),

200 independent samples from each of the four hypothetical

treatment effect distributions were generated for each sample size,
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Fig. 2 Saver and Gornbein’s (9) four hypothetical treatment effects. The solid horizontal line indicates the placebo group, with the bars in each modified
Rankin Scale category representing the outcome in the treatment group. b/w/s, probability of treatment being better than/worse than/same as placebo;
A, Agresti generalized odds ratio (GenOR); W, Wilcoxon–Mann–Whitney (WMW) GenOR. Note that the treatment of ties leads to the Agresti GenOR
(ignores ties) always being greater than the WMW GenOR (50:50 splitting of ties).
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and respective estimates of reduced major axis regression slope

and intercept were obtained.

The GenOR and permutation methods were then illustrated

using mRS data from the National Institute of Neurological

Disorders and Stroke tissue plasminogen activator (NINDS tPA)

trial (15).

Results

Unbiased estimates of population GenOR with correct
95% confidence interval coverage
The four hypothetical treatment effect distributions are illus-

trated in Fig. 2. The horizontal line indicates the placebo group.

Corresponding text shows the probabilities that a randomly

selected treatment patient would have a better, worse, or equal

mRS score compared with a randomly selected placebo patient,

along with the corresponding Agresti and WMW GenORs. The

WMW GenOR is consistently lower than the Agresti GenOR

because of the splitting of ties that are ignored using the Agresti

(or Howard et al.) method. For example, in the early recanaliza-

tion model, the probability that the treatment patient had a better

outcome than the placebo patient was 46%, the probability they

had a worse outcome was 37%, and the probability that both were

equal was 17%. When ties are ignored, this leads to a GenOR of

1·25, meaning a treatment patient is 1·25 times more likely to have

a better rather than worse outcome when compared with a ran-

domly chosen placebo patient. When pairs with tied outcomes are

split evenly between better and worse outcome, the treatment

patient was 1·21 times more likely to have a better rather than

worse outcome when compared with a randomly chosen placebo

patient.

Over 10 000 simulated trials with 600 subjects in each treat-

ment arm, Agresti GenOR and WMW GenOR, produced unbi-

ased estimates of the respective true odds ratios, and the 95% CI

included the true values of the treatment effect in 95% of simu-

lated trials for all treatment scenarios, indicating correct coverage.

Therefore both Agresti GenOR and WMW GenOR provided a

reliable method of estimating the respective true odds of

improvement for patients receiving treatment.

Agreement between the permutation-based and
analytical approaches as a function of number
of permutations
The agreement between the P-values obtained by permutation

versus the analytical GenOR method as a function of the number

of permutations is shown in Fig. 3A and B. For all treatment effect

scenarios, as the number of permutations increased, the permu-

tation P-value converged on the analytical result, and by 1 000

permutations there was near-perfect concordance. There was no

appreciable difference in the concordance for Agresti GenOR and

WMW GenOR. There also appears to be little difference between

the treatment effect models in the number of permutations

required for the P-values to converge. Very similar P-values were

obtained by performing 10 000 and 100 000 permutations, thus

demonstrating that the P-values for the asymptotic solution and

the permutation method converge between 1000 and 10 000

permutations.

Agreement between the permutation-based and
analytical approaches as a function of sample size
Figure 3C and D and Table S1 (online) demonstrate the analo-

gous comparison as a function of the sample size. For all treat-

ment effect scenarios, the agreement between analytical and

permutation methods increased as the sample size increased. The

magnitude of Lin’s CC remained above 0·95 for all the sample

sizes, signifying excellent agreement according to Landis and

Koch (16). The agreement became practically indistinguishable

from 1 for sample sizes of 15 or more subjects per arm, irrespec-

tive of the treatment scenario used. This is consistent with the

total sample size of 30 being traditionally regarded as a quasi-

threshold for using normal-distribution-based approximations.

Comparison of adjustment for baseline variables
between the stratified permutation-based approach
and the stratified Agresti/WMW GenOR
Excellent agreement between the stratified permutation-based

and analytical approaches was observed for all treatment sce-

narios, as manifested by the values of Lin’s CC above 0·99

(Table 2). The reduced major axis slope being very close to 1 and

intercept values very close to 0 indicated that neither method

consistently produced higher/lower outcomes and that the mag-

nitude of the outcome produced did not affect the degree of

agreement between the methods.

Ignoring tied observations consistently overestimates
treatment effect compared to splitting
tied observations
Irrespective of the treatment pattern, ignoring (‘dropping’) ties

when calculating effect sizes consistently overestimated the effects

compared with ‘splitting’ the ties. As detailed in Table S2 (online),

this comparative overestimation was higher for smaller samples,

Fig. 3 The agreement between P-values calculated by permutation
method and using Agresti (drop ties) and Wilcoxon–Mann–Whitney
(WMW; split ties) generalized odds ratios (GenORs). Lin’s concordance
coefficient is shown as a function of number of permutations (a,b) and
total sample size (c,d). Treatment patterns: ER, early recanalization; LR,
late recanalization, NP, neuroprotection, R, random benefit.With ≥1000
permutations the P-value converges with that calculated using Agresti/
WMW GenOR. With sample size ≥15 patients per group, the P-value for
Agresti/WMW GenOR converges with the permutation P-value.
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but even for the relatively large sample size of 200 subjects per

group, a considerable proportional bias between the two methods

(reduced major axis regression slope around 0·85) was obvious.

Performance in the NINDS tPA trial data
Ninety-day mRS data are freely available for the NINDS tPA trial

(15). For this analysis, mRS 5 and 6 were combined to maintain

consistency with Howard et al. In 49% of possible pairs of treat-

ment and placebo patients, the treatment patient had a better

outcome than the placebo patient. In 33% of pairs, the placebo

patient had the better outcome, and in 18% of pairs the mRS was

tied. This leads to the Agresti GenOR (1·44, 95% CI: 1·16 to 1·8,

P = 0·00078; ordinal NNT = 5·63, 95% CI: 3·59 to 13·85), and

when pairs of patients who have the same mRS are not ignored,

there is a decrease in effect size, and the respective estimate of

WMW GenOR is 1·35 (95% CI: 1·12 to 1·61, P = 0·00094; ordinal

NNT = 6·65, 95% CI: 4·21 to 16·39). Note that because ties are

ignored in the Agresti GenOR, and consequently the sample size is

reduced, the 95% CIs are slightly wider than for WMW GenOR.

The ordinal NNTs resulting from WMW GenOR approaches are

consistent with the unmatched ordinal NNTs reported by Bath

et al. (6) for NINDS data as 6·65 (95% CI: 3·98, 20·1).

For illustrative purposes, if adjustment for baseline character-

istics is required and patients are stratified by age (above versus

below 70 years old) and stroke severity (mild: National Institutes

of Health Stroke Scale [NIHSS] 7 or below; moderate: NIHSS 8 to

15 inclusive; severe: NIHSS 16 or above), the resulting Agresti

GenOR equals 1·43 (95% CI: 1·13, 1·8, P = 0·0014; ordinal

NNT = 5·68, 95% CI: 3·48 to 16·65) and WMW GenOR equals

1·29 (95% CI: 1·08, 1·55, P = 0·0052; ordinal NNT = 7·8, 95% CI:

4·66 to 25·06). Applying a proportional odds ‘shift analysis’

approach (8) implemented as an ordinal logistic regression model

with the treatment group, age, and NIHSS as inputs results in an

adjusted proportional OR of 1·57 (95% CI: 1·17 to 2·09,

P = 0·002). Importantly, a fundamental ‘parallel regression/

proportional odds’ assumption underlying the proportional odds

approach to ordinal analysis was violated for the age variable

(Brant test P = 0·031), casting doubt on the validity of the pro-

portional odds model for NINDS data.

Ease of meta-analysis
GenOR behaves just like odds ratios and hazard ratios in the sense

that the sampling distribution of log(GenOR) follows an approxi-

mately normal distribution (12). Therefore, GenOR and its CI can

be compared with those obtained from any other ordinal

responses from other studies and easily included in a meta-

analysis. Figure 4 presents a forest plot illustrating a fictitious

meta-analysis of 10 randomly generated hypothetical studies with

significant heterogeneity of treatment effect and the overall

GenOR of 1.

Discussion

This method provides accurate and easily interpretable ordinal

analysis of the mRS. It provides a P-value, CI and NNT and could

be applied to any ordinal scale. A particularly useful property of

GenOR is the ability to directly meta-analyze data from different

trials.

The WMW rank-sum test is commonly used to test the null

hypothesis of no treatment effect when the outcome data are not

parametrically distributed. The null hypothesis that WMW

GenOR = 1 is a simple rearrangement of the null hypothesis in

the WMW U-test. Therefore, both tests produce the same P-value.

Agresti GenOR is similar to WMW GenOR and the WMW U-test,

except that tied values are ignored. In the four treatment effect

scenarios, the permutation P-values converged to the values

Table 2 Agreement between P-values generated by stratified permutation approach and stratified generalized odds ratio approach

Treatment pattern
Stratified Agresti generalized
odds ratio (split ties)

Stratified Wilcoxon–Mann–Whitney
generalized odds ratio (drop ties)

Neuroprotective
Lin’s concordance coefficient 0·997 0·998
95% confidence interval 0·995, 0·999 0·998, 0·999
Slope (intercept)* 1·024 (−0·007) 1·015 (−0·009)

Early recanalization
Lin’s concordance coefficient 0·998 0·999
95% confidence interval 0·998, 0·999 0·998, 1·000
Slope (intercept)* 1·016 (−0·011) 0·993 (−0·003)

Late recanalization
Lin’s concordance coefficient 0·999 0·998
95% confidence interval 0·999, 1·000 0·997, 0·999
Slope (intercept)* 0·993 (0·001) 1·003 (−0·005)

Random benefits
Lin’s concordance coefficient 0·999 0·998
95% confidence interval 0·998, 0·999 0·998, 0·999
Slope (intercept)* 1·009 (−0·006) 1·007 (−0·005)

Stratified permutation approach follows Howard et al. (11). Data in every cell are based on 50 independent samples, each containing 100 subjects
per treatment arm, and on 5000 permutations per independent sample.
*Slope and intercept generated by reduced major axis regression; note that a slope of 1 and intercept and 0 would mean the absence of proportional
and fixed bias, respectively.
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found by the analytic solution given by Agresti (12) and later by

O’Brien (17). The two-sided P-value for the WMW GenOR cal-

culated via permutation and analytic solution also converged.

As the analytic solution allows for the estimation of standard

errors, it is possible to construct a CI for the effect measure. In

contrast, the permutation method provides only a P-value for the

test of the null hypothesis.

In all cases, the WMW GenOR is more conservative than the

Agresti GenOR. This is because the ties are split evenly between

the denominator and numerator of the odds ratio, bringing the

ratio closer to 1. There are other ways in which ties could be

handled; for example, instead of an even split they could be placed

with the pairs where the treatment patient had a better outcome

than the control patient. The odds ratio then estimates how many

times more likely a randomly chosen treatment patient is to have

an outcome no worse than a randomly chosen control patient

than he or she is to have a worse outcome. However the ties are

handled, ignoring them leads to difficulties in interpreting the

odds ratio when a large proportion of data are ignored, and the

reduced sample size reduces the precision of the estimate. If, for

example, GenOR = 2 but this ignored 50% of the observations

that were tied, a more complete and honest statement would be

‘You are twice as likely to have a better outcome than a worse

outcome with treatment, but there’s also a 50% chance you would

have the same outcome as you would without treatment.’

A limitation of this method and that of Howard et al. (11) is

that adjustment for continuous variables (e.g., age) is not directly

possible. The suggested solution to this is to use the stratified

WMW GenOR, which allows adjustment for categorical con-

founders. Continuous variables such as age and baseline stroke

severity could be grouped in predefined categories, and then a

stratified version of the WMW GenOR could be used.

Adopting either Howard et al.’s (11) approach or the approach

proposed in this paper also provides an easily understandable and

natural link to the concept of the ordinal NNT discussed recently

by Bath et al. (2) for unmatched comparison of all subjects, where

the NNT is derived as the reciprocal of the difference between

‘proportion better’ and ‘proportion worse’.

An important advantage of the odds-based approach as com-

pared with the probabilities-based approach proposed by Howard

et al. (11) is that GenOR provides a simple effect size that can be

compared with similar outcomes from ordinal responses (includ-

ing continuous ones) from other studies (17). This opens up an

attractive opportunity for their use in meta-analysis, as if they

were odds ratios generated from studies with binary outcomes, as

well as the possibility of consistent visual representation by means

of forest plots. In addition, as log(GenOR) follows an approxi-

mately normal distribution, GenOR can be readily used as an

outcome for dose–response studies and incorporated into adap-

tive designs.

In conclusion, both Agresti and WMW GenORs provide a

natural extension to the WMW test by presenting an interpre-

table, consistent effect measure that requires no assumptions

about the distribution of ordinal outcome data and provides

adequate facilities for stratified analysis. Given the ability to cal-

culate a CI and reduced computational intensity, we feel they

should be preferred to the permutation method as long as the

sample size is no less than 15 subjects per treatment arm. Splitting

the ties as in the WMW GenOR approach is favored, as it provides

more realistic effect size estimates with tighter CIs as compared

with the Agresti GenOR.
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