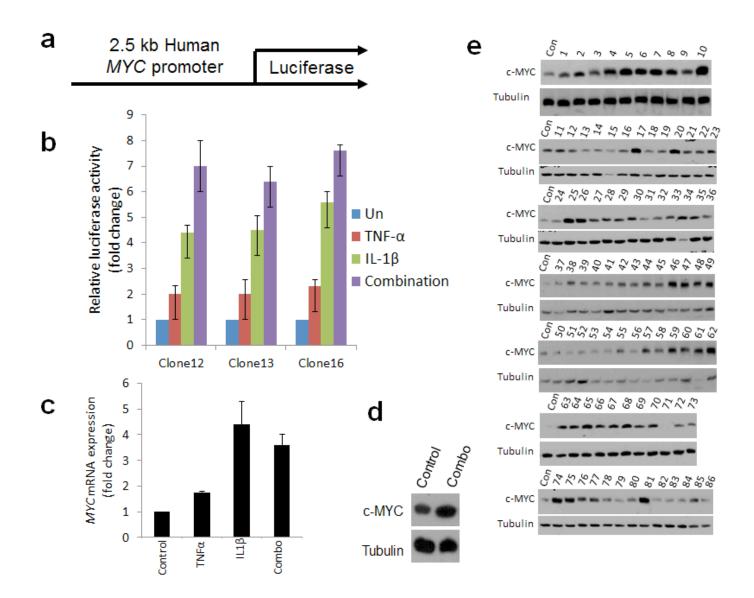
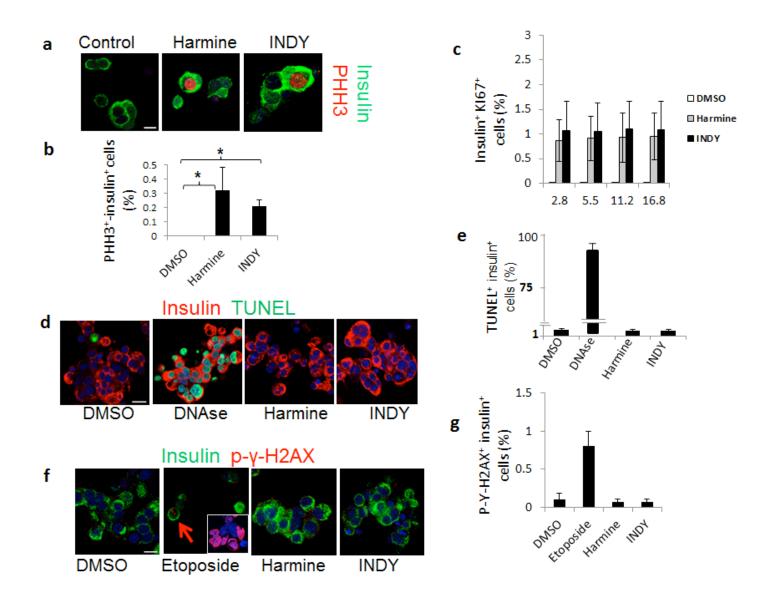
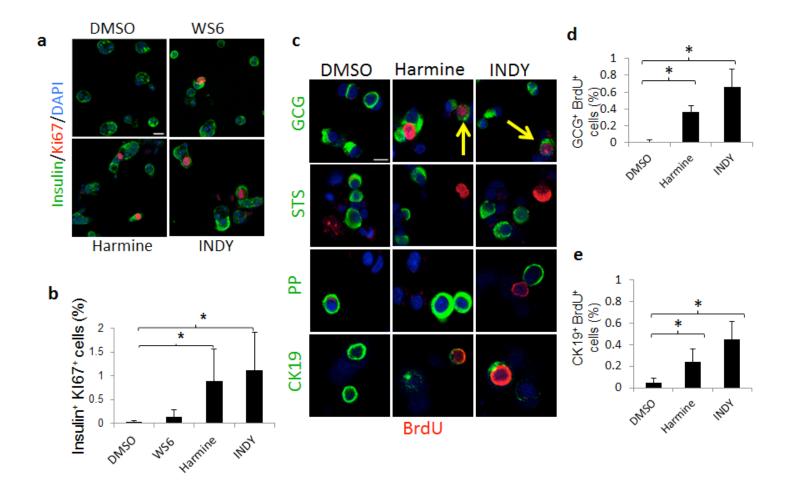
### **Supplementary Information**


# Induction of human pancreatic beta cell replication by inhibitors of dual specificity tyrosine regulated kinase

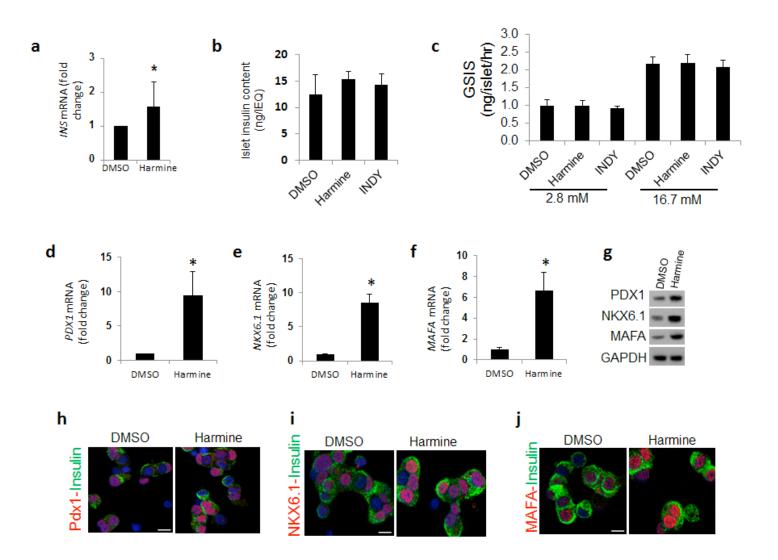
<sup>1,2</sup>Peng Wang PhD, <sup>1,2</sup>Juan-Carlos Alvarez-Perez PhD, <sup>3,4</sup>Dan P. Felsenfeld PhD,
<sup>1</sup>Hongtao Liu BA, <sup>3,4</sup>Sharmila Sivendran PhD, <sup>1,2</sup>Aaron Bender BS,
<sup>1,2</sup>Anil Kumar PhD, <sup>3</sup>Roberto Sanchez PhD, <sup>1,2,5</sup>Donald K. Scott PhD,
<sup>1,2,5</sup>Adolfo Garcia-Ocaña PhD, <sup>1,2,6</sup>Andrew F. Stewart MD


 From: <sup>1</sup>The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA
<sup>2</sup>The Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, NY, NY USA
<sup>3</sup>The Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA
<sup>4</sup>The Integrated Screening Core, Icahn School of Medicine at Mount Sinai, NY, NY USA
<sup>5</sup>The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA

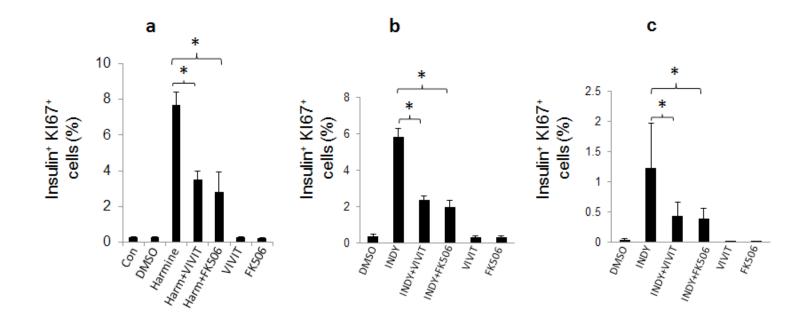
- 1. Supplementary Figures
- 2. Supplementary Table 1: PCR Primers


#### Supplementary Figures.

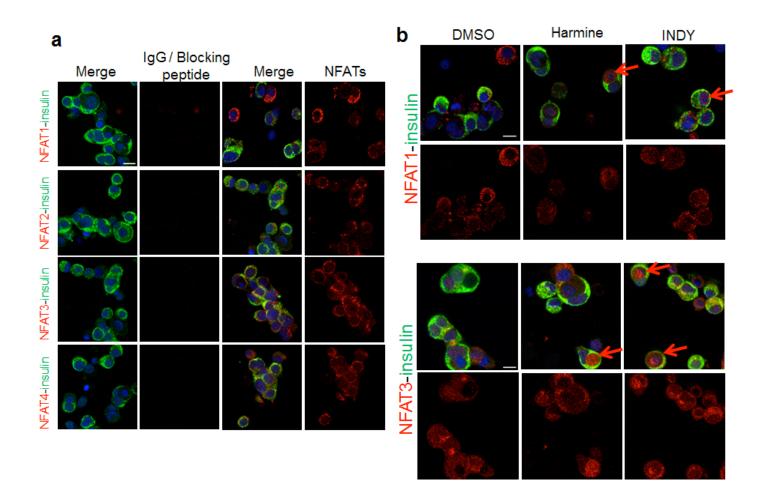



Supplementary Figure 1. The strategy and validation of methods for the high-throughput screen (HTS). (a) The *MYC* promoter-driven luciferase reporter construct. (b) Examples of HepG2-*MYC* -luciferase stable clones responding to the IL-1 $\beta$  or TNF- $\alpha$  or a combination (Combo). The cytokine combination was selected because the *MYC* promoter has NFkB sites. Clone 13 was selected for the HTS. (c) Endogenous *MYC* mRNA responses in HepG2 cells to IL-1 $\beta$  and TNF- $\alpha$  for 8 hr. Bars denote mean ± s.e.m. (d) A representative immunoblot of the c-MYC protein response to IL-1 $\beta$  and TNF $\alpha$  10 ng ml<sup>-1</sup> in HepG2 cells. (e) Secondary screening for c-MYC by immunoblot in HepG2 cells of all 86 compounds meeting criteria in the primary luciferase screen. "Con" indicates vehicle (DMSO). Harmine is Compound 1.

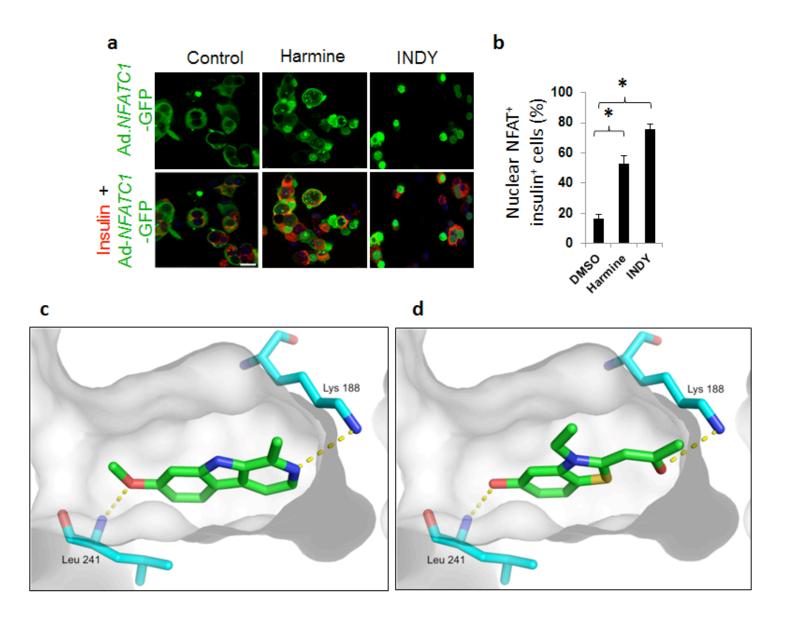



Supplementary Figure 2. Effects of harmine or INDY on beta cell PHH3, DNA damage and survival. (a) Examples of harmine (10  $\mu$ M)- or INDY (15  $\mu$ M)-treated (four days) dispersed human islets immunolabeled using the G2/M marker, phospho-histone-3 (PHH3). (b) Quantification of the percent insulin<sup>+</sup>/PHH3<sup>+</sup> cells. Four different human islet preparations were studied. (c) Effects of glucose concentrations on Ki67 labeling in response to harmine. Four different human islet preparations were studied. (d) TUNEL labeling in human islets treated for three days with harmine or INDY as in (a). DNase-treated islets served as positive control. (e) Quantification of TUNEL labeling in three different human islet preparations. (f) Examples of the effects of harmine or INDY treatment as in (a) on DNA damage in beta cells as detected by immunolabeling for the DNA damage marker, phospho- $\gamma$ -H2AX in response to etoposide treatment in beta cells. The inset in the etoposide panel includes HEK293 cells that were used as positive control, since non-replicating beta cells do not display DNA damage in response to etoposide. The blue signal is DAPI. (g) Quantification of phospho- $\gamma$ -H2AX in beta cells in four different human islet preparations. In all relevant panels, error bars indicate mean ± s.e.m.; the scale bar indicates 10  $\mu$ m; \* indicates *P*<0.05 as determined by Wilcoxon Rank test.

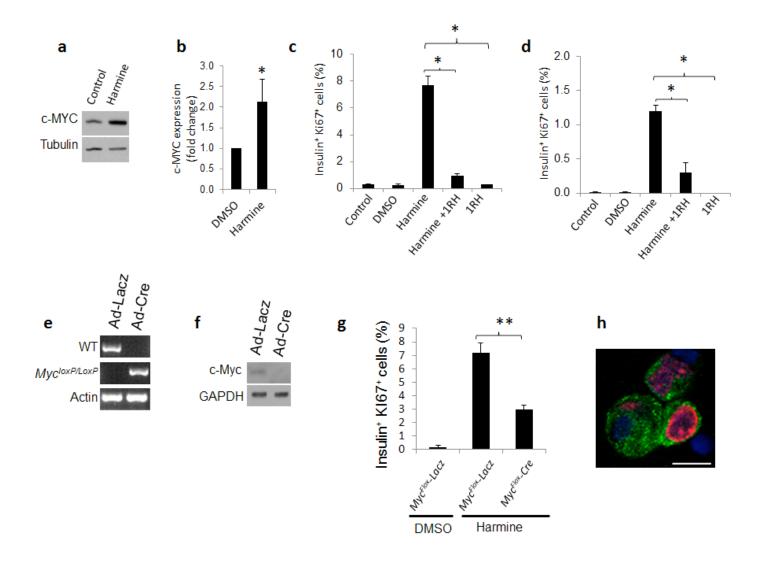



Supplementary Figure 3. Harmine and INDY vs. WS6 and human beta cell proliferation, and proliferation in non-beta islet cells. (a) Examples of dispersed human islets treated with 1  $\mu$ M WS6, 10  $\mu$ M Harmine, or 15  $\mu$ M INDY for four days, and immunolabeled for Ki67 and insulin. (b) Quantification of beta cell Ki67 labeling in response to WS6, harmine, or INDY in seven human islet preparations. A minimum of 1000 beta cells was counted for each bar. (c) Examples of BrdU labeling in non-beta islet cells in human islets treated with DMSO (vehicle), 10  $\mu$ M harmine or 15  $\mu$ M INDY, and immunolabeled for BrdU, glucagon (GCG), somatostatin (STS), pancreatic polypeptide (PP) or the ductal cell marker CK19. (d) Quantification of proliferation in alpha cells (GCG) and (e) ductal (CK19) cells in four different sets of human islets. In all relevant panels, bars indicate s.e.m.; \* indicates *P*<0.05 as determined by Wilcoxon Rank test; the scale bar indicates 10  $\mu$ m.

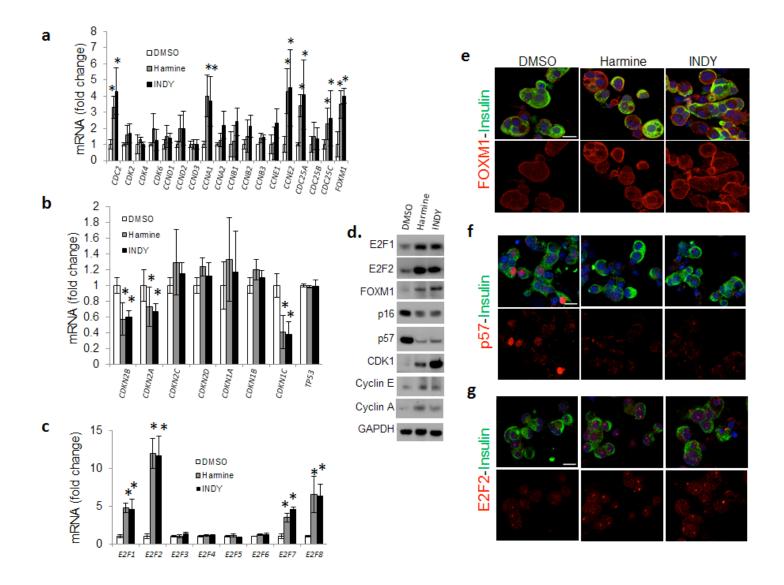



Supplementary Figure 4. Effects of Harmine and INDY on markers of beta cell differentiation. (a) *INS* mRNA expression by qPCR in four different human islet preparations treated with DMSO or harmine (10  $\mu$ M) for 72 hours. (b) Effects of DMSO or harmine as in (a) on human islet insulin content in five different human islet preparations. (c) Effects of DMSO or harmine treatment as in (a) on glucose-stimulated insulin secretion from human islets. (d-f) Effects of DMSO or harmine treatment as in (a) on human islet *PDX1*, *NKX6.1* and *MAFA* mRNA expression in four different human islet preparations. (g) Representative examples of immunoblots for PDX1, NKX6.1 and MAFA in human islets treated with harmine as above. Three different human islet preparations were examined for each transcription factor. (h-j) Representative examples of immunocytochemistry for PDX1, NKX6.1 and MAFA in three sets of dispersed human islets treated with vehicle or harmine (10  $\mu$ M for 72 hours). In all relevant panels, error bars indicate s.e.m.; \*indicates *P*<0.05 as determined by Wilcoxon Rank test; the scale bar indicates 10  $\mu$ m.




Supplementary Figure 5. Calcineurin-NFAT-DYRK1A signaling in harmine- and INDY-induced beta cell proliferation. (a) Effects of harmine (10  $\mu$ M, 72 hr) on rat beta Ki67 labeling, and of inhibition with VIVIT (2.5  $\mu$ M) or FK506 (10  $\mu$ M) on four different rat islet preparations. (b). Effects of INDY (15  $\mu$ M, 72 hr) on rat beta Ki67 labeling, and inhibition with VIVIT or FK506 as in (a) on four different rat islet preparations. (c) Effects of INDY (15  $\mu$ M, 72 hr) on human beta Ki67 labeling, and inhibition with VIVIT or FK506 as in (a) on four different rat islet preparations. (c) Effects of INDY (15  $\mu$ M, 72 hr) on human beta Ki67 labeling, and inhibition with VIVIT or FK506 as in (a) on four different human islet preparations. In all panels, error bars indicate s.e.m.; \*indicates *P*<0.05 as determined by Wilcoxon Rank test.




Supplementary Figure 6. Examples of immunolabeling and nuclear trafficking of endogenous NFATs1-4 in human islets. (a) Endogenous NFATs1-4 in human beta cells. "IgG/Blocking peptide" indicates that an NFAT1 blocking peptide was used as a negative control for NFAT1; for the other NFATs, non-specific IgG's were used as negative control. Representative of four different human islet preparations. (b) Harmine (10  $\mu$ M) INDY and (15 $\mu$ M) treatment (three days) drives endogenous NFAT1 and NFAT3 translocation to the nucleus of human beta cells. Examples are indicated by red arrows. Representative of four different human islet preparations. In all relevant panels, the scale bars indicate 10  $\mu$ m.



Supplementary Figure 7. Nuclear translocation of Ad.*NFATC1*-GFP and the ATP-binding pocket in DYRK1A. (a) A representative example of harmine (10  $\mu$ M, 72 hr) and INDY (15  $\mu$ M, 72 hr) treatment increasing the nuclear frequency of adenoviral *NFATC1*-GFP (encoding NFAT2-GFP) in human beta cells. The scale bar indicates 10  $\mu$ m. (b) Quantification of nuclear frequency of Ad.*NFATC1*-GFP in four different preparations of human islets treated with harmine (10  $\mu$ M, 72 hr) and INDY (15  $\mu$ M, 72 hr). Error bars indicate s.e.m.; \*indicates *P*<0.05 as determined by Wilcoxon Rank test. (c & d) Illustrations of harmine (c) and INDY (d) positioned in the ATP-binding pocket of DYRK1A, depicted as a gray surface. Harmine and INDY are shown in stick representation (green). The hydrogen bonds with residues Lys<sup>188</sup> and Leu<sup>241</sup> are shown as dashed yellow lines. The crystal structures correspond to PDB file 3anr (c) and 3anq (d)<sup>20.</sup> Figures prepared with The PyMOL Molecular Graphics System, Version 1.6.0.0 (Schrödinger, LLC).



Supplementary Figure 8. Low-level c-MYC expression is required for mouse, rat and beta cell proliferation mediated by harmine. (a) A c-MYC immunoblot of human islets treated with harmine (10  $\mu$ M, 24 hr). (b) Densitometric quantification of c-MYC immunoblots from four human islet preparations. (c) Quantification of four different experiments in rat islets revealing the effects of the c-MYC inhibitor, 1RH (20  $\mu$ M, 2 hr pretreatment) on harmine-induced beta cell proliferation. (d) Quantification of four different experiments in rat islets revealing the effects of the c-MYC inhibitor, 1RH (20  $\mu$ M, 2 hr pretreatment) on harmine-induced beta cell proliferation. (d) Quantification of four different experiments in human islets revealing the effects of the c-MYC inhibitor, 1RH (20  $\mu$ M, 2 hr pretreatment) on harmine-induced beta cell proliferation. (e) An example of DNA excision by Ad.Cre of *Myc* DNA in islets isolated from either wild-type ("WT") or *Myc*<sup>loxP/loxP</sup> mice. (f) c-Myc protein expression in the islets of *Myc*<sup>loxP/loxP</sup> mice following Ad.Cre treatment. (g) Quantification of Ki67 labeling of beta cells in islets of wild-type and *Myc*<sup>loxP/loxP</sup> mice transduced with Ad.Cre or Ad.LacZ and treated with harmine. (h) An example of Ki67 immunolabeling in beta cells in *Myc*<sup>loxP/loxP</sup> islets transduced with Ad.LacZ and treated with harmine. In all relevant panels, error bars indicate s.e.m.; \*indicates *P*<0.05 and \*\*indicates *P*<0.01 as determined by Wilcoxon Rank test. The scale bar in (h) indicates 10  $\mu$ m.



Supplementary Figure 9. Harmine and INDY upregulate cell cycle activators and downregulate cell cycle inhibitors in human beta cells. (a–c) Real-time quantitative PCR of mRNAs encoding cell cycle activators and inhibitors in four different preparations of human islets treated with harmine (10  $\mu$ M, 72 hr) or INDY (15  $\mu$ M, 72 hr). Error bars indicate s.e.m.; \*indicates *P*<0.05 as determined by Wilcoxon Rank test. (d) Representative immunoblots of key molecules upregulated in (a-c) from three different human islet preparations treated with harmine or INDY as in (a). (e) Representative immunocytochemistry from three different human islet donors for FOXM1, p57<sup>KIP2</sup>, and E2F2 in response to harmine and INDY treatment as in (a). The scale bar indicates 10  $\mu$ m.

## Supplementary Table 1.

#### PCR Primers Used for RT-PCR.

| Primer name    | Sequence                |
|----------------|-------------------------|
| CDKN2B forward | CGTTAAGTT TACGGCCAACG   |
| CDKN2B reverse | GGTGAGAGTGGCAGGGTCT     |
| CDKN2A forward | ATGGAGCCTTCGGCTGACT     |
| CDKN2A reverse | GTAACTATTCGGTGCGTTGGG   |
| CDKN2C forward | AAACTTGGAAATCCCGAGATTGC |
| CDKN2C reverse | CGAAACCAGTTCGGTCTTTCAA  |
| CDKN2D forward | AGTCCAGTCCATGACGCAG     |
| CDKN2D reverse | ATCAGGCACGTTGACATCAGC   |
| CDKN1A forward | CGATGGAACTTCGACTTTGTCA  |
| CDKN1A reverse | GCACAAGGGTACAAGACAGTG   |
| CDKN1B forward | TAATTGGGGCTCCGGCTAACT   |
| CDKN1B reverse | TGCAGGTCGCTTCCTTATTCC   |
| CDKN1C forward | GCGGCGATCAAGAAGCTGT     |
| CDKN1C reverse | GCTTGGCGAAGAAATCGGAGA   |
| CDC2 forward   | GGATGTGCTTATGCAGGATTCC  |
| CDC2 reverse   | CATGTACTGACCAGGAGGGATAG |
| CDK2 forward   | GTACCTCCCTGGATGAAGAT    |
| CDK2 reverse   | CGAAATCCGCTTGTTAGGGTC   |
| CDK4 forward   | TCAGCACAGTTCGTGAGGTG    |
| CDK4 reverse   | GTCCATCAGCCGGACAACAT    |
| CDK6 forward   | CCAGATGGCTCTAACCTCAGT   |
| CDK6 reverse   | AACTTCCACGAAAAAGAGGCTT  |
| CCND1 Froward  | CAATGACCCCGCACGATTTC    |
| CCND1 Reverse  | CATGGAGGGCGGATTGGAA     |
| CCND2 Froward  | TTTGCCATGTACCCACCGTC    |
| CCND2 Reverse  | AGGGCATCACAAGTGAGCG     |
| CCND3 Froward  | TACCCGCCATCCATGATCG     |

| CCND3 Reverse  | AGGCAGTCCACTTCAGTGC     |
|----------------|-------------------------|
| CCNA1 Froward  | GAGGTCCCGATGCTTGTCAG    |
| CCNA1 Reverse  | GTTAGCAGCCCTAGCACTGTC   |
| CCNA2 Froward  | GGATGGTAGTTTTGAGTCACCAC |
| CCNA2 Reverse  | CACGAGGATAGCTCTCATACTGT |
| CCNB1 Froward  | AATAAGGCGAAGATCAACATGGC |
| CCNB1 Reverse  | TTTGTTACCAATGTCCCCAAGAG |
| CCNB2 Froward  | TTGGCTGGTACAAGTCCACTC   |
| CCNB2 Reverse  | TGGGAACTGGTATAAGCATTGTC |
| CCNB3 Froward  | ATGAAGGCAGTATGCAAGAAGG  |
| CCNB3 Reverse  | CATCCACACGAGGTGAGTTGT   |
| CCNE1 Froward  | ACTCAACGTGCAAGCCTCG     |
| CCNE1 Reverse  | GCTCAAGAAAGTGCTGATCCC   |
| CCNE2 Froward  | TCAAGACGAAGTAGCCGTTTAC  |
| CCNE2 Reverse  | TGACATCCTGGGTAGTTTTCCTC |
| CDC25A Forward | GTGAAGGCGCTATTTGGCG     |
| CDC25A reverse | TGGTTGCTCATAATCACTGCC   |
| CDC25B Forward | ACGCACCTATCCCTGTCTC     |
| CDC25B reverse | CTGGAAGCGTCTGATGGCAA    |
| CDC25C Forward | ATGACAATGGAAACTTGGTGGAC |
| CDC25C reverse | GGAGCGATATAGGCCACTTCTG  |
| E2F1 Forward   | CATCCCAGGAGGTCACTTCTG   |
| E2F1 reverse   | GACAACAGCGGTTCTTGCTC    |
| E2F2 Forward   | CGTCCCTGAGTTCCCAACC     |
| E2F2 reverse   | GCGAAGTGTCATACCGAGTCTT  |
| E2F3 Forward   | AGAAAGCGGTCATCAGTACCT   |
| E2F3 reverse   | TGGACTTCGTAGTGCAGCTCT   |
| E2F4 Forward   | CACCACCAAGTTCGTGTCCC    |
| E2F4 reverse   | GCGTACAGCTAGGGTGTCA     |
| E2F5 Forward   | ATGTCTTCTGACGTGTTTCCTC  |
| E2F5 reverse   | CGGGGTAGGAGAAAGCCTT     |
| E2F6 Forward   | TCCATGAACAGATCGTCATTGC  |
|                |                         |

| E2F6 reverse                    | TCCGTTGGTGCTCCTTATGTG      |
|---------------------------------|----------------------------|
| E2F7 Forward                    | TAGCTCGCTATCCAAGTTATCCC    |
| E2F7 reverse                    | CAATGTCATAGATGCGTCTCCTT    |
| E2F8 Forward                    | AAGTACGCCGAGCAGATTATG      |
| E2F8 reverse                    | ATGTCTGGGTGTCCATTTGGG      |
| FOXM1 Forward                   | ATACGTGGATTGAGGACCACT      |
| FOXM1 reverse                   | TCCAATGTCAAGTAGCGGTTG      |
| TPp53 Forward                   | GAGGTTGGCTCTGACTGTACC      |
| TPp53 reverse                   | TCCGTCCCAGTAGATTACCAC      |
| INS (Forward)                   | TCACACCTGGTGGAAGCTCTCTA    |
| INS (Reverse)                   | ACAATGCCACGCTTCTGCAGGGAC   |
| PDX1 (Forward                   | ACCAAAGCTCACGCGTGGAAA      |
| PDX1 (Reverse)                  | TGATGTGTCTCTCGGTCAAGTT     |
| NKX6-1 (Forward)                | ACACGAGACCCACTTTTTCCG      |
| NKX6-1 (Reverse)                | TGCTGGACTTGTGCTTCTTCAAC    |
| ACTB (Forward)                  | CATGTACGTTGCTATCCAGGC      |
| ACTB (Reverse)                  | CTCCTTAATGTCACGCACGAT      |
| Human <i>c-MYC</i> (Forward)    | CCACACATCAGCACAACTACG      |
| Human <i>c-MYC</i> (Reverse)    | CAGCAGGATAGTCCTTCCGAG      |
| MAFA (Forward)                  | GAGCGGCTACCAGCATCAC        |
| MAFA (Reverse)                  | CTCTGGAGTTGGCACTTCTCG      |
| Mouse Myc-Flox WT Forward       | GCCCCTGAATTGCTAGGAAGACTG   |
| Mouse Myc-Flox WT Reverse       | CCGACCGGGTCCGAGTCCCTATT    |
| Mouse Myc-Flox Deletion Forward | TCGCGCCCCTGAATTGCTAGGAA    |
| Mouse Myc-Flox Deletion Reverse | TGCCCAGATAGGGAGCTGTGATACTT |
| Mouse Actb Forward              | AGCCATGTACGTAGCCATCC       |
| Mouse Actb Reverse              | CTCTCAGCTGTGGTGGTGAA       |