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Web Appendix A: Correspondence with A-learning.

Consider the loss function given by equation (4) in Section 2.2:
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Taking the derivative with respect to ⇣ yields

@
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and solving the set of estimating equations @
@⇣Ln(⇣) = 0 for ⇣ is equivalent to solving the

estimating equations that are solved in the context of A-learning.
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Web Appendix B: Brief Discussion on Confidence Inter-

vals for the Di↵erence in Mean Outcomes Under Com-

peting Regimes

Let g and g1 be two competing rules for assigning treatment. Furthermore, let Vg = E{Y ⇤(g)}

and Vg1 = E{Y ⇤(g1)} be the expected values of the response of interest using treatment

allocation procedures g and g1 respectively and let I = Vg � Vg1 . Since larger values of the

response are preferable, if I > 0 then allocation procedure g is considered to be superior to

g1 whereas if I  0 then g is equivalent or inferior to g1. We are interested in constructing

a confidence interval for I and employ a bootstrap procedure that is outlined below.

Let Vg be the mean response for those who follow the treatment assignment depending

on the baseline scalar and functional covariates. The estimate of this value, V̂g, is computed

from the sample by taking the average response for those subjects who actually received the

optimal treatment prescribed by regime g. Let V1 be the mean response for those who take

treatment 1. The estimate of this value, V̂1, is computed from the sample simply by taking

the average response for those subjects who received treatment 1. To obtain a (1� ↵)100%

confidence interval for I = Vg � V1 the following bootstrap procedure is employed:

1. Draw B bootstrap samples with replacement from the original data.

2. For each bootstrap sample b in {1, . . . , B}, obtain an estimate for the treatment regime

g, which we refer to as ĝ(b), and compute Î(b) = V̂ĝ(b) � V̂ (b)
1 where V̂ĝ(b) and V̂ (b)

1 are the

estimated mean responses under ĝ(b) and treatment 1 respectively in the bth bootstrap

sample.

3. From Î(1), . . . , Î(B), compute the ↵/2th and (1 � ↵/2)th percentiles to construct a

(1� ↵)100% confidence interval for I.

One reviewer pointed out that standard methods for inference, including the bootstrap,
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may be invalid. Several investigators have developed approaches for handling the challenges

associated with conducting inference in such a setting including Robins (2004); Chakraborty

et al. (2009); Laber et al. (2014), and van der Laan and Luedtke (2014). However, none

have specifically investigated settings in which the estimated regime depends on functional

covariates. In Web Appendix C below, we apply the bootstrap procedure outlined above to

our simulated data from Section 3 of the paper and show that the coverage of the constructed

confidence intervals is acceptable for the settings that we consider.

Web Appendix C: Additional Results from Numerical

Investigations

Estimation Accuracy for Scalar Contrast Parameters

Tables 1 - 6 show the Monte-Carlo mean � (se) values for the scalar parameters in the

contrast in each setting for each scenario.
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Table 4: Scenario 4: Monte-Carlo mean (se) for scalar contrast parameter estimates.

True Values
�1 �2

n = 600 n = 300 n = 600 n = 300
�0 = �0.65 -0.66 (0.74) -0.59 (1.08) -0.69 (1.60) -0.62 (2.33)
�1 = 0.65 0.65 (0.05) 0.65 (0.08) 0.64 (0.13) 0.64 (0.19)
�2 = �0.65 -0.65 (0.06) -0.65 (0.09) -0.65 (0.15) -0.66 (0.21)
�3 = 0 0.00 (0.05) 0.00 (0.08) -0.01 (0.13) 0.00 (0.19)
�4 = 0 0.00 (0.06) 0.00 (0.09) 0.02 (0.13) 0.02 (0.19)
�5 = 0 0.00 (0.06) -0.01 (0.09) 0.01 (0.13) -0.01 (0.21)
�6 = 0 0.00 (0.06) 0.00 (0.09) -0.01 (0.12) 0.00 (0.20)
�7 = 0 0.00 (0.05) 0.00 (0.08) 0.00 (0.11) 0.01 (0.18)
�8 = 0 0.01 (0.06) 0.01 (0.09) 0.00 (0.13) 0.00 (0.20)
�9 = 0 0.00 (0.06) 0.00 (0.09) -0.01 (0.13) 0.00 (0.20)
�10 = 0 0.00 (0.06) 0.00 (0.09) 0.01 (0.14) 0.00 (0.20)
�11 = 0 0.00 (0.06) 0.01 (0.09) -0.01 (0.14) 0.00 (0.20)
�12 = 0 0.00 (0.06) 0.01 (0.08) 0.01 (0.13) 0.01 (0.20)
�13 = 0 0.00 (0.05) -0.01 (0.09) -0.01 (0.13) -0.02 (0.19)
�14 = 0 0.01 (0.06) 0.00 (0.09) 0.01 (0.14) 0.01 (0.19)
�15 = 0 0.00 (0.05) 0.00 (0.07) 0.00 (0.12) 0.01 (0.17)

Table 5: Scenario 5: Monte-Carlo mean (se) for scalar contrast parameter estimates.

True Values
�1 �2

n = 600 n = 300 n = 600 n = 300
�0 = �0.65 -0.63 (0.73) -0.60 (1.03) -0.60 (1.05) -0.51 (1.56)
�1 = 0.65 0.66 (0.07) 0.66 (0.11) 0.65 (0.10) 0.65 (0.14)
�2 = �0.65 -0.65 (0.07) -0.66 (0.11) -0.65 (0.10) -0.66 (0.14)
�3 = 0 0.00 (0.06) 0.00 (0.08) -0.01 (0.08) -0.01 (0.12)
�4 = 0 0.00 (0.06) 0.00 (0.09) 0.01 (0.09) 0.01 (0.12)
�5 = 0 0.00 (0.06) -0.01 (0.09) 0.00 (0.09) -0.01 (0.13)
�6 = 0 0.00 (0.06) 0.00 (0.09) 0.00 (0.09) 0.00 (0.13)
�7 = 0 0.00 (0.05) 0.00 (0.08) 0.00 (0.08) 0.00 (0.12)
�8 = 0 0.01 (0.06) 0.01 (0.09) 0.00 (0.08) 0.01 (0.13)
�9 = 0 -0.01 (0.06) -0.01 (0.09) -0.01 (0.09) -0.01 (0.13)
�10 = 0 0.00 (0.06) 0.00 (0.08) 0.01 (0.09) 0.00 (0.13)
�11 = 0 0.00 (0.06) 0.00 (0.09) -0.01 (0.09) -0.01 (0.13)
�12 = 0 0.00 (0.06) 0.01 (0.09) 0.01 (0.08) 0.01 (0.13)
�13 = 0 0.00 (0.06) 0.00 (0.09) -0.01 (0.08) -0.02 (0.11)
�14 = 0 0.01 (0.06) 0.00 (0.08) 0.01 (0.08) 0.01 (0.12)
�15 = 0 0.00 (0.05) 0.00 (0.07) 0.00 (0.08) 0.00 (0.11)
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Table 6: Scenario 6: Monte-Carlo mean (se) for scalar contrast parameter estimates.

True Values
�1 �2

n = 600 n = 300 n = 600 n = 300
�0 = �0.65 -0.67 (0.59) -0.59 (0.89) -0.62 (1.10) -0.51 (1.58)
�1 = 0.65 0.65 (0.05) 0.64 (0.07) 0.64 (0.09) 0.64 (0.13)
�2 = �0.65 -0.65 (0.06) -0.65 (0.08) -0.65 (0.10) -0.66 (0.14)
�3 = 0 0.00 (0.04) 0.00 (0.07) -0.01 (0.09) 0.00 (0.13)
�4 = 0 0.00 (0.04) 0.00 (0.07) 0.01 (0.09) 0.02 (0.13)
�5 = 0 0.00 (0.05) -0.01 (0.08) 0.00 (0.09) -0.01 (0.14)
�6 = 0 0.00 (0.05) 0.00 (0.07) -0.01 (0.09) -0.00 (0.14)
�7 = 0 0.00 (0.05) 0.00 (0.07) 0.00 (0.08) 0.00 (0.12)
�8 = 0 0.00 (0.05) 0.01 (0.07) 0.00 (0.09) 0.00 (0.14)
�9 = 0 0.00 (0.05) 0.00 (0.07) 0.00 (0.09) 0.00 (0.13)
�10 = 0 0.00 (0.05) 0.00 (0.07) 0.01 (0.09) 0.00 (0.13)
�11 = 0 0.00 (0.05) 0.01 (0.07) -0.01 (0.09) 0.00 (0.14)
�12 = 0 0.00 (0.05) 0.00 (0.07) 0.01 (0.09) 0.01 (0.14)
�13 = 0 0.00 (0.04) 0.00 (0.07) -0.01 (0.09) -0.02 (0.13)
�14 = 0 0.00 (0.05) 0.00 (0.07) 0.01 (0.10) 0.01 (0.14)
�15 = 0 0.00 (0.04) 0.00 (0.06) 0.00 (0.08) 0.01 (0.12)

Estimation Accuracy of Functional Contrast Parameters

Figure 1 provides information on estimation accuracy of the functional contrast parameters

{!1,!2} for Scenarios 1 - 3 and {!1, . . . ,!15} for Scenarios 4 - 6. For ease of comparison,

we present box plots of the log IMSE values for each coe�cient function for each setting for

each scenario.

Bootstrap Confidence Intervals

Below we show results of applying the bootstrap resampling approach discussed in Web

Appendix B to our simulated data. We applied this resampling procedure to 250 data sets

from Scenarios 1 - 3 for sample sizes 75, 150, 300, and 600, using �1 as the working model for

h0. Let g correspond to the treatment decision model that includes the scalar and functional

covariates being assessed in the numerical investigations.

We used B = 500 bootstrap samples to obtain confidence intervals for I1, the average
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Figure 1: First Row: true contrast coe�cient functions. Second Row: log IMSE values
from Scenarios 1 (cyan) and 4 (orange) using �1 and Scenarios 1 (green) and 4 (pink) using
�2 for each coe�cient function directly above in top row. Third Row: log IMSE values
from Scenarios 2 (cyan) and 5 (orange) using �1 and Scenarios 2 (green) and 5 (pink) using
�2 for each coe�cient function directly above in top row. Fourth Row: log IMSE values
from Scenarios 3 (cyan) and 6 (orange) using �1 and Scenarios 3 (green) and 6 (pink) using
�2 for each coe�cient function directly above in top row.

7



0
.8

5
0

.9
0

0
.9

5
1

.0
0

Scenario 1

Sample Size

C
o
ve

ra
g

e
 R

a
te

7
5

1
5

0

3
0

0

6
0

0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

Scenario 2

Sample Size

C
o
ve

ra
g

e
 R

a
te

7
5

1
5

0

3
0

0

6
0

0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

Scenario 3

Sample Size

C
o
ve

ra
g

e
 R

a
te

7
5

1
5

0

3
0

0

6
0

0

0
.0

0
.4

0
.8

Sample Size

M
e

a
n

 W
id

th

7
5

1
5

0

3
0

0

6
0

0

0
.0

0
.4

0
.8

Sample Size

M
e

a
n

 W
id

th

7
5

1
5

0

3
0

0

6
0

0

0
.0

0
.4

0
.8

Sample Size

M
e

a
n

 W
id

th

7
5

1
5

0

3
0

0

6
0

0

Figure 2: First Row: Coverage rate of bootstrap confidence intervals for mean improve-
ments I0 (cyan) and I1 (orange) for Scenarios 1 - 3 and at di↵erent sample sizes. Second
Row: Corresponding mean interval widths.

improvement in using g rather than treatment 1 for all subjects, and for I0, the average

improvement in using g rather than treatment 0 for all subjects. In all scenarios, we note

that use of the true optimal treatment over treatment 1 yields an average improvement

of about 0.50 while use of the true optimal treatment over treatment 0 yields an average

improvement of about 0.38.

The coverage rates and mean widths of the 95% bootstrap confidence intervals for the

improvement values in each setting and for di↵erent sample sizes are shown in top and bottom

panels of Figure 2 respectively. For our simulated data, the typical bootstrap confidence

interval appears to perform satisfactorily with respect to coverage and width.
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Table 7: Average time (sd) in seconds to estimate the treatment regime based on 10 fits.

n
Scenario � 75 150 300 600

1
�1 1.254 (0.025) 1.399 (0.027) 1.760 (0.049) 2.526 (0.063)
�2 0.608 (0.012) 0.677 (0.014) 0.871 (0.048) 1.227 (0.041)

2
�1 1.264 (0.033) 1.395 (0.027) 1.709 (0.020) 2.483 (0.044)
�2 0.622 (0.027) 0.677 (0.012) 0.839 (0.033) 1.202 (0.039)

3
�1 1.273 (0.030) 1.412 (0.023) 1.751 (0.026) 2.520 (0.043)
�2 0.604 (0.018) 0.684 (0.016) 0.832 (0.011) 1.210 (0.029)

4
�1 - - 33.294 (6.542) 39.859 (3.555)
�2 - - 8.805 (0.412) 12.207 (0.365)

5
�1 - - 30.489 (4.687) 45.356 (6.448)
�2 - - 8.437 (0.442) 12.563 (0.537)

6
�1 - - 30.488 (2.112) 42.877 (3.276)
�2 - - 8.726 (0.328) 12.515 (0.464)

Web Appendix D: Computational Considerations

For each combination of scenario, working baseline function, and sample size considered in

the numerical investigations of Section 3, we computed the time to estimate the treatment

regime using our proposed method on 10 data sets. All computing was done on an Apple

iMac desktop with a 3.4 GHz Intel Core i7 processor using R version 3.0.3. Table 7 shows the

average time to fit and standard deviation in seconds over the 10 data sets in each setting.

References

Chakraborty, B., Murphy, S., and Strecher, V. (2009). Inference for non-regular parameters

in optimal dynamic treatment regimes. Statistical Methods in Medical Research 19:317–

343.

Laber, E., Lizotte, D., Qian, M., Pelham, W., and Murphy, S. (2014). Dynamic treatment

regimes: Technical challenges and applications. Electronic Journal of Statistics 8:1225–

1272.

9



Robins, J. (2004). Optimal structured nested models for optimal sequential decisions. In

Proceedings of the Second Seattle Symposium on Biostatistics, D. Lin and P. Heagerty,

eds., pp. 189–326. Springer, New York.

van der Laan, M. and Luedtke, A. (2014). Targeted learning of the mean outcome under an

optimal dynamic treatment rule. Technical report, University of California, Berkeley.

10


