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Documentation 
Extensive documentation on CloudForest is found on the GitHub page: 
https://github.com/IlyaLab/CloudForest. The documentation includes installation instructions 
(https://github.com/IlyaLab/CloudForest#installation), guide lines for a quick start 
(https://github.com/IlyaLab/CloudForest#quick-start), and detailed explanations of all CloudForest 
functionalities. 

The methods that apply to the features in the Random Forest, i.e. the features in general, but also 
methods specifically for numerical, categorical and target features are found here: 
https://github.com/ilyalab/CloudForest/blob/master/featureinterfaces.go. GoDoc documentation, 
which provides easy and structured access to all CloudForest functions, is found here: 
http://godoc.org/github.com/IlyaLab/CloudForest.  

The original and continuously updated code repository is found here: 
https://github.com/ryanbressler/CloudForest. 

https://github.com/IlyaLab/CloudForest
https://github.com/IlyaLab/CloudForest#installation
https://github.com/IlyaLab/CloudForest#quick-start
https://github.com/ilyalab/CloudForest/blob/master/featureinterfaces.go
http://godoc.org/github.com/IlyaLab/CloudForest
https://github.com/ryanbressler/CloudForest


2 
 

Experimental details 

For Figure 1 and Figure A  
For all Random Forest (RF) implementations employed in Figure 1 and Figure A, we used the same 
standard settings. Specifically, the RFs consisted of 500 trees, the number features considered at each 
split was the square root of the total number of features, and the minimum number of samples per leaf 
was one. The experiments were run on a MacBookPro10,1, OS X 10.8.5, 2.8 GHz Intel Core i7 Ivy Bridge 
(3635QM), 8 GB 1600 MHz DDR3. The clinical feature matrix used for these experiments is found here 
https://github.com/IlyaLab/CloudForest/blob/master/data/clin.fm. 

For Figure B 
The CloudForest tests were run with the same settings as for Figure 1 and Figure A, except for the 
various extensions (roughly balanced bagging, etc.) described in the figure. This experiment was run on a 
compute server with eight cores (Intel Xeon CPU X5472 3.00 GHz). The number of cores (the number of 
jobs to run in parallel) was set to 8. An example of a CloudForest command for such an extension is 
given below: 

growforest -train train_1.fm -target C:0 -nTrees 500 -rfpred rf_8_1.sf -ace 10 -cutoff .05 -

balance=true -nCores 8 

applyforest -fm test_1.fm -rfpred rf_8_1.sf -preds rf_8_1.cl 

Train_1.fm and Test_1.fm are training and test sets created with the nfold_utility 
(https://github.com/IlyaLab/CloudForest#nfold-utility) from the clinical feature matrix clin.fm. 

For Figure C 
CloudForest and SciKit-Learn's RandomForestClassifier were run on three datasets from the LIBSVM 
repository [1]: 

Dataset Citation Number of classes Number of 
training samples 

Number of test 
samples 

Number of 
features 

Leukemia [2] 2 38 34 7129 
Gisette [3] 2 6,000 1,000 5,000 
Poker [4] 10 25,010 1,000,000 10 

 

Each dataset consists of a training set and a test set. RFs were trained on the training sets. For both 
implementations we used the same settings. Specifically, the RFs consisted of 5000 trees, the number 
features considered at each split was the square root of the total number of features, and the minimum 
number of samples per leaf was one. The number of cores (the number of jobs to run in parallel) was set 
to 8 for both implementations. The error was computed on the test set, and was calculated as the 
number of misclassified samples divided by the total number of samples. The experiment was run on a 
compute server with eight cores (Intel Xeon CPU X5472 3.00 GHz). An example for the CloudForest and 
SciKit-Learn commands for these different runs is given below. (The python wrapper sklrf.py is found 
here https://github.com/IlyaLab/CloudForest/blob/master/wrappers/python/sklrf.py). 

https://github.com/IlyaLab/CloudForest/blob/master/data/clin.fm
https://github.com/IlyaLab/CloudForest#nfold-utility
https://github.com/IlyaLab/CloudForest/blob/master/wrappers/python/sklrf.py
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growforest -train leu.libsvm -nTrees 5000 -rfpred cf_1_1.sf -target 0 -nCores 8 > cf1_1.time 

applyforest -fm leu.t.libsvm -rfpred cf_1_1.sf -preds cf_1_1.cl 

python sklrf.py leu.libsvm 5000 8 leu.t.libsvm skl1.cl > skl1.time 

The .limsvm extensions were added to the original (extension-less) files, as CloudForest recognizes 
.libsvm files based on the extension (see https://github.com/IlyaLab/CloudForest#data-file-formats). 

For Figure 2 and Figures D and E 
CloudForest and SciKit-Learn's RandomForestClassifier were run on six datasets from the TCGA: 

Dataset Cit. 
Number 

of 
samples 

Number of 
P53 mutants 

(positive 
samples) 

Number of features Type of features 

Total Copy 
number Mutation Gene 

expression Binary Categorical Numerical 

BLCA [5] 123 62 21948 3836 1627 16485 1627 70 20251 

CRC [6] 209 108 22607 106 1998 20503 1998 0 20609 

GBM [7] 144 48 28006 4350 8256 15400 8256 0 19750 

HNSC [8] 273 198 21280 3273 1800 16207 1800 66 19414 

LUAD [9] 466 251 36091 3621 17070 15400 17070 0 19021 

STAD [10] 255 116 34792 4296 8219 22277 8219 81 26492 

 

Half of training samples were (randomly) selected for training and the other samples were used for 
testing. RFs were trained on the training sets. For both implementations we used the same settings. 
Specifically, the RFs consisted of 10,000 trees, the number features considered at each split was the 
square root of the total number of features, and the minimum number of samples per leaf was one. The 
number of cores (the number of jobs to run in parallel) was set to 12 for both implementations. The 
error was computed on the test set, and was calculated as the number of misclassified samples divided 
by the total number of samples. The experiment was run on a compute server with 16 cores (Intel Core 
Quad CPU Q8400 2.66GHz). 

To impute missing values in the dataset (which originally contained no missing values) we employed the 
following strategy: (1) We computed the Pearson correlation coefficient and accompanying P-value for 
each feature with target, i.e. the binary mutation status of the tumor suppressor gene TP53. All features 
with a P-value<0.05 were identified as informative features. (2) The informative features were grouped 
into clusters using hierarchical clustering with correlation as a distance metric, complete linkage and a 
cutoff of 0.7. Thus, all pairs of features in a cluster had a Pearson correlation coefficient of 0.7 or higher. 
Each cluster was assigned an integer score, which as defined as the rounded -10log P-value of the 
feature with the smallest P-value in the cluster. (3) A cluster was randomly selected, where the 
probability of selecting a cluster was proportional to its integer score. Thus, clusters with highly 
informative features were more likely to be selected. After a cluster was selected, a sample in the 
training set was randomly selected, and the feature values of all features in that cluster for that sample 
were set to missing values (‘NA’). This procedure was repeated until the proportion of missing values in 
the informative features across all training samples was 0%, 1%, 5%, 10%, 25% and 50%.  

https://github.com/IlyaLab/CloudForest#data-file-formats
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Code snippets comparing CloudForest and SciKit-Learn 
For purposes of comparison, below we give the code for the CloudForest and SciKit-Learn 
implementation for impurity computation based on entropy. 

https://github.com/ryanbressler/CloudForest/blob/master/entropytarget.go 

package CloudForest 
 import ( 
 "math" 
) 
 /* 
EntropyTarget wraps a categorical feature for use in entropy driven classification 
as in Ross Quinlan's ID3 (Iterative Dichotomizer 3). 
*/ 
type EntropyTarget struct { 
 CatFeature 
} 
 //NewEntropyTarget creates a RefretTarget and initializes EntropyTarget.Costs to the proper 
length. 
func NewEntropyTarget(f CatFeature) *EntropyTarget { 
 return &EntropyTarget{f} 
} 
 /* 
EntropyTarget.SplitImpurity is a version of Split Impurity that calls EntropyTarget.Impurity 
*/ 
func (target *EntropyTarget) SplitImpurity(l *[]int, r *[]int, m *[]int, allocs 
*BestSplitAllocs) (impurityDecrease float64) { 
 nl := float64(len(*l)) 
 nr := float64(len(*r)) 
 nm := 0.0 
  impurityDecrease = nl * target.Impurity(l, allocs.LCounter) 
 impurityDecrease += nr * target.Impurity(r, allocs.RCounter) 
 if m != nil && len(*m) > 0 { 
  nm = float64(len(*m)) 
  impurityDecrease += nm * target.Impurity(m, allocs.Counter) 
 } 
  impurityDecrease /= nl + nr + nm 
 Return 
} 
 //UpdateSImpFromAllocs willl be called when splits are being built by moving cases from r to l 
as in learning from numerical variables. 
//Here it just wraps SplitImpurity but it can be implemented to provide further optimization. 
func (target *EntropyTarget) UpdateSImpFromAllocs(l *[]int, r *[]int, m *[]int, allocs 
*BestSplitAllocs, movedRtoL *[]int) (impurityDecrease float64) { 
 target.MoveCountsRtoL(allocs, movedRtoL) 
 nl := float64(len(*l)) 
 nr := float64(len(*r)) 
 nm := 0.0 
  impurityDecrease = nl * target.ImpFromCounts(len(*l), allocs.LCounter) 
 impurityDecrease += nr * target.ImpFromCounts(len(*r), allocs.RCounter) 
 if m != nil && len(*m) > 0 { 
  nm = float64(len(*m)) 
  impurityDecrease += nm * target.ImpFromCounts(len(*m), allocs.Counter) 
 } 
  impurityDecrease /= nl + nr + nm 
 Return 
} 
 func (target *EntropyTarget) ImpFromCounts(total int, counts *[]int) (e float64) { 
 p := 0.0 

https://github.com/ryanbressler/CloudForest/blob/master/entropytarget.go
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 for _, i := range *counts { 
  if i > 0 { 
   p = float64(i) / float64(total) 
   e -= p * math.Log(p) 
  } 
 } 
 return 
 } 
 //EntropyTarget.Impurity implements categorical entropy as sum(pj*log2(pj)) where pj 
//is the number of cases with the j'th category over the total number of cases. 
func (target *EntropyTarget) Impurity(cases *[]int, counts *[]int) (e float64) { 
  total := len(*cases) 
 target.CountPerCat(cases, counts) 
  p := 0.0 
 for _, i := range *counts { 
  if i > 0 { 
   p = float64(i) / float64(total) 
   e -= p * math.Log(p) 
  } 
  } 
  return 
 } 
 

https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/tree/_tree.pyx#L368 

cdef class Entropy(ClassificationCriterion): 
    """Cross Entropy impurity criteria. 
     Let the target be a classification outcome taking values in 0, 1, ..., K-1. 
    If node m represents a region Rm with Nm observations, then let 
         pmk = 1/ Nm \sum_{x_i in Rm} I(yi = k) 
     be the proportion of class k observations in node m. 
     The cross-entropy is then defined as 
         cross-entropy = - \sum_{k=0}^{K-1} pmk log(pmk) 
    """ 
    cdef double node_impurity(self) nogil: 
        """Evaluate the impurity of the current node, i.e. the impurity of 
           samples[start:end].""" 
        cdef double weighted_n_node_samples = self.weighted_n_node_samples 
         cdef SIZE_t n_outputs = self.n_outputs 
        cdef SIZE_t* n_classes = self.n_classes 
        cdef SIZE_t label_count_stride = self.label_count_stride 
        cdef double* label_count_total = self.label_count_total 
         cdef double entropy = 0.0 
        cdef double total = 0.0 
        cdef double tmp 
        cdef SIZE_t k 
        cdef SIZE_t c 
         for k in range(n_outputs): 
            entropy = 0.0 
             for c in range(n_classes[k]): 
                tmp = label_count_total[c] 
                if tmp > 0.0: 
                    tmp /= weighted_n_node_samples 
                    entropy -= tmp * log(tmp) 
             total += entropy 
            label_count_total += label_count_stride 
         return total / n_outputs 
     cdef void children_impurity(self, double* impurity_left, 
                                double* impurity_right) nogil: 

https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/tree/_tree.pyx#L368
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        """Evaluate the impurity in children nodes, i.e. the impurity of the 
           left child (samples[start:pos]) and the impurity the right child 
           (samples[pos:end]).""" 
        cdef double weighted_n_node_samples = self.weighted_n_node_samples 
        cdef double weighted_n_left = self.weighted_n_left 
        cdef double weighted_n_right = self.weighted_n_right 
         cdef SIZE_t n_outputs = self.n_outputs 
        cdef SIZE_t* n_classes = self.n_classes 
        cdef SIZE_t label_count_stride = self.label_count_stride 
        cdef double* label_count_left = self.label_count_left 
        cdef double* label_count_right = self.label_count_right 
         cdef double entropy_left = 0.0 
        cdef double entropy_right = 0.0 
        cdef double total_left = 0.0 
        cdef double total_right = 0.0 
        cdef double tmp 
        cdef SIZE_t k 
        cdef SIZE_t c 
         for k in range(n_outputs): 
            entropy_left = 0.0 
            entropy_right = 0.0 
             for c in range(n_classes[k]): 
                tmp = label_count_left[c] 
                if tmp > 0.0: 
                    tmp /= weighted_n_left 
                    entropy_left -= tmp * log(tmp) 
                 tmp = label_count_right[c] 
                if tmp > 0.0: 
                    tmp /= weighted_n_right 
                    entropy_right -= tmp * log(tmp) 
             total_left += entropy_left 
            total_right += entropy_right 
            label_count_left += label_count_stride 
            label_count_right += label_count_stride 
         impurity_left[0] = total_left / n_outputs 
        impurity_right[0] = total_right / n_outputs 
  

Citations 
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Supplementary Figure Legends 
Figure A | Expanded version of Figure 1, which also includes results for RF-ace, and for CloudForest 
applied to the datasets after categorical features have been transformed into binary features using one-
hot encoding (CF on bin. cat. data). 

Figure B | Classification performance of CloudForest on the clinical dataset with various extensions. 

Figure C | Classification performance (top) and training time (bottom) for SciKit-Learn's 
RandomForestClassifier (SKL) and CloudForest with and without various extensions on three LIBSVM 
datasets; leukemia (left), gisette (middle) and poker (right).  

Figure D | Comparison between CloudForest and SkiKit-Learn in terms of prediction performance for six 
TCGA datasets with varying numbers of missing values (x-axis). 

Figure E | Comparison between CloudForest and SkiKit-Learn in terms of computation time for six TCGA 
datasets with varying numbers of missing values (x-axis). 
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