
1

S1 File - CloudForest Supplementary Material

Contents
Documentation ... 1

Experimental details ... 2

For Figure 1 and Figure A .. 2

For Figure B ... 2

For Figure C ... 2

For Figure 2 and Figures D and E .. 3

Code snippets comparing CloudForest and SciKit-Learn .. 4

Citations .. 6

Supplementary Figure Legends ... 7

Documentation
Extensive documentation on CloudForest is found on the GitHub page:
https://github.com/IlyaLab/CloudForest. The documentation includes installation instructions
(https://github.com/IlyaLab/CloudForest#installation), guide lines for a quick start
(https://github.com/IlyaLab/CloudForest#quick-start), and detailed explanations of all CloudForest
functionalities.

The methods that apply to the features in the Random Forest, i.e. the features in general, but also
methods specifically for numerical, categorical and target features are found here:
https://github.com/ilyalab/CloudForest/blob/master/featureinterfaces.go. GoDoc documentation,
which provides easy and structured access to all CloudForest functions, is found here:
http://godoc.org/github.com/IlyaLab/CloudForest.

The original and continuously updated code repository is found here:
https://github.com/ryanbressler/CloudForest.

https://github.com/IlyaLab/CloudForest
https://github.com/IlyaLab/CloudForest#installation
https://github.com/IlyaLab/CloudForest#quick-start
https://github.com/ilyalab/CloudForest/blob/master/featureinterfaces.go
http://godoc.org/github.com/IlyaLab/CloudForest
https://github.com/ryanbressler/CloudForest

2

Experimental details

For Figure 1 and Figure A
For all Random Forest (RF) implementations employed in Figure 1 and Figure A, we used the same
standard settings. Specifically, the RFs consisted of 500 trees, the number features considered at each
split was the square root of the total number of features, and the minimum number of samples per leaf
was one. The experiments were run on a MacBookPro10,1, OS X 10.8.5, 2.8 GHz Intel Core i7 Ivy Bridge
(3635QM), 8 GB 1600 MHz DDR3. The clinical feature matrix used for these experiments is found here
https://github.com/IlyaLab/CloudForest/blob/master/data/clin.fm.

For Figure B
The CloudForest tests were run with the same settings as for Figure 1 and Figure A, except for the
various extensions (roughly balanced bagging, etc.) described in the figure. This experiment was run on a
compute server with eight cores (Intel Xeon CPU X5472 3.00 GHz). The number of cores (the number of
jobs to run in parallel) was set to 8. An example of a CloudForest command for such an extension is
given below:

growforest -train train_1.fm -target C:0 -nTrees 500 -rfpred rf_8_1.sf -ace 10 -cutoff .05 -

balance=true -nCores 8

applyforest -fm test_1.fm -rfpred rf_8_1.sf -preds rf_8_1.cl

Train_1.fm and Test_1.fm are training and test sets created with the nfold_utility
(https://github.com/IlyaLab/CloudForest#nfold-utility) from the clinical feature matrix clin.fm.

For Figure C
CloudForest and SciKit-Learn's RandomForestClassifier were run on three datasets from the LIBSVM
repository [1]:

Dataset Citation Number of classes Number of
training samples

Number of test
samples

Number of
features

Leukemia [2] 2 38 34 7129
Gisette [3] 2 6,000 1,000 5,000
Poker [4] 10 25,010 1,000,000 10

Each dataset consists of a training set and a test set. RFs were trained on the training sets. For both
implementations we used the same settings. Specifically, the RFs consisted of 5000 trees, the number
features considered at each split was the square root of the total number of features, and the minimum
number of samples per leaf was one. The number of cores (the number of jobs to run in parallel) was set
to 8 for both implementations. The error was computed on the test set, and was calculated as the
number of misclassified samples divided by the total number of samples. The experiment was run on a
compute server with eight cores (Intel Xeon CPU X5472 3.00 GHz). An example for the CloudForest and
SciKit-Learn commands for these different runs is given below. (The python wrapper sklrf.py is found
here https://github.com/IlyaLab/CloudForest/blob/master/wrappers/python/sklrf.py).

https://github.com/IlyaLab/CloudForest/blob/master/data/clin.fm
https://github.com/IlyaLab/CloudForest#nfold-utility
https://github.com/IlyaLab/CloudForest/blob/master/wrappers/python/sklrf.py

3

growforest -train leu.libsvm -nTrees 5000 -rfpred cf_1_1.sf -target 0 -nCores 8 > cf1_1.time

applyforest -fm leu.t.libsvm -rfpred cf_1_1.sf -preds cf_1_1.cl

python sklrf.py leu.libsvm 5000 8 leu.t.libsvm skl1.cl > skl1.time

The .limsvm extensions were added to the original (extension-less) files, as CloudForest recognizes
.libsvm files based on the extension (see https://github.com/IlyaLab/CloudForest#data-file-formats).

For Figure 2 and Figures D and E
CloudForest and SciKit-Learn's RandomForestClassifier were run on six datasets from the TCGA:

Dataset Cit.
Number

of
samples

Number of
P53 mutants

(positive
samples)

Number of features Type of features

Total Copy
number Mutation Gene

expression Binary Categorical Numerical

BLCA [5] 123 62 21948 3836 1627 16485 1627 70 20251

CRC [6] 209 108 22607 106 1998 20503 1998 0 20609

GBM [7] 144 48 28006 4350 8256 15400 8256 0 19750

HNSC [8] 273 198 21280 3273 1800 16207 1800 66 19414

LUAD [9] 466 251 36091 3621 17070 15400 17070 0 19021

STAD [10] 255 116 34792 4296 8219 22277 8219 81 26492

Half of training samples were (randomly) selected for training and the other samples were used for
testing. RFs were trained on the training sets. For both implementations we used the same settings.
Specifically, the RFs consisted of 10,000 trees, the number features considered at each split was the
square root of the total number of features, and the minimum number of samples per leaf was one. The
number of cores (the number of jobs to run in parallel) was set to 12 for both implementations. The
error was computed on the test set, and was calculated as the number of misclassified samples divided
by the total number of samples. The experiment was run on a compute server with 16 cores (Intel Core
Quad CPU Q8400 2.66GHz).

To impute missing values in the dataset (which originally contained no missing values) we employed the
following strategy: (1) We computed the Pearson correlation coefficient and accompanying P-value for
each feature with target, i.e. the binary mutation status of the tumor suppressor gene TP53. All features
with a P-value<0.05 were identified as informative features. (2) The informative features were grouped
into clusters using hierarchical clustering with correlation as a distance metric, complete linkage and a
cutoff of 0.7. Thus, all pairs of features in a cluster had a Pearson correlation coefficient of 0.7 or higher.
Each cluster was assigned an integer score, which as defined as the rounded -10log P-value of the
feature with the smallest P-value in the cluster. (3) A cluster was randomly selected, where the
probability of selecting a cluster was proportional to its integer score. Thus, clusters with highly
informative features were more likely to be selected. After a cluster was selected, a sample in the
training set was randomly selected, and the feature values of all features in that cluster for that sample
were set to missing values (‘NA’). This procedure was repeated until the proportion of missing values in
the informative features across all training samples was 0%, 1%, 5%, 10%, 25% and 50%.

https://github.com/IlyaLab/CloudForest#data-file-formats

4

Code snippets comparing CloudForest and SciKit-Learn
For purposes of comparison, below we give the code for the CloudForest and SciKit-Learn
implementation for impurity computation based on entropy.

https://github.com/ryanbressler/CloudForest/blob/master/entropytarget.go

package CloudForest
 import (
 "math"
)
 /*
EntropyTarget wraps a categorical feature for use in entropy driven classification
as in Ross Quinlan's ID3 (Iterative Dichotomizer 3).
*/
type EntropyTarget struct {
 CatFeature
}
 //NewEntropyTarget creates a RefretTarget and initializes EntropyTarget.Costs to the proper
length.
func NewEntropyTarget(f CatFeature) *EntropyTarget {
 return &EntropyTarget{f}
}
 /*
EntropyTarget.SplitImpurity is a version of Split Impurity that calls EntropyTarget.Impurity
*/
func (target *EntropyTarget) SplitImpurity(l *[]int, r *[]int, m *[]int, allocs
*BestSplitAllocs) (impurityDecrease float64) {
 nl := float64(len(*l))
 nr := float64(len(*r))
 nm := 0.0
 impurityDecrease = nl * target.Impurity(l, allocs.LCounter)
 impurityDecrease += nr * target.Impurity(r, allocs.RCounter)
 if m != nil && len(*m) > 0 {
 nm = float64(len(*m))
 impurityDecrease += nm * target.Impurity(m, allocs.Counter)
 }
 impurityDecrease /= nl + nr + nm
 Return
}
 //UpdateSImpFromAllocs willl be called when splits are being built by moving cases from r to l
as in learning from numerical variables.
//Here it just wraps SplitImpurity but it can be implemented to provide further optimization.
func (target *EntropyTarget) UpdateSImpFromAllocs(l *[]int, r *[]int, m *[]int, allocs
*BestSplitAllocs, movedRtoL *[]int) (impurityDecrease float64) {
 target.MoveCountsRtoL(allocs, movedRtoL)
 nl := float64(len(*l))
 nr := float64(len(*r))
 nm := 0.0
 impurityDecrease = nl * target.ImpFromCounts(len(*l), allocs.LCounter)
 impurityDecrease += nr * target.ImpFromCounts(len(*r), allocs.RCounter)
 if m != nil && len(*m) > 0 {
 nm = float64(len(*m))
 impurityDecrease += nm * target.ImpFromCounts(len(*m), allocs.Counter)
 }
 impurityDecrease /= nl + nr + nm
 Return
}
 func (target *EntropyTarget) ImpFromCounts(total int, counts *[]int) (e float64) {
 p := 0.0

https://github.com/ryanbressler/CloudForest/blob/master/entropytarget.go

5

 for _, i := range *counts {
 if i > 0 {
 p = float64(i) / float64(total)
 e -= p * math.Log(p)
 }
 }
 return
 }
 //EntropyTarget.Impurity implements categorical entropy as sum(pj*log2(pj)) where pj
//is the number of cases with the j'th category over the total number of cases.
func (target *EntropyTarget) Impurity(cases *[]int, counts *[]int) (e float64) {
 total := len(*cases)
 target.CountPerCat(cases, counts)
 p := 0.0
 for _, i := range *counts {
 if i > 0 {
 p = float64(i) / float64(total)
 e -= p * math.Log(p)
 }
 }
 return
 }

https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/tree/_tree.pyx#L368

cdef class Entropy(ClassificationCriterion):
 """Cross Entropy impurity criteria.
 Let the target be a classification outcome taking values in 0, 1, ..., K-1.
 If node m represents a region Rm with Nm observations, then let
 pmk = 1/ Nm \sum_{x_i in Rm} I(yi = k)
 be the proportion of class k observations in node m.
 The cross-entropy is then defined as
 cross-entropy = - \sum_{k=0}^{K-1} pmk log(pmk)
 """
 cdef double node_impurity(self) nogil:
 """Evaluate the impurity of the current node, i.e. the impurity of
 samples[start:end]."""
 cdef double weighted_n_node_samples = self.weighted_n_node_samples
 cdef SIZE_t n_outputs = self.n_outputs
 cdef SIZE_t* n_classes = self.n_classes
 cdef SIZE_t label_count_stride = self.label_count_stride
 cdef double* label_count_total = self.label_count_total
 cdef double entropy = 0.0
 cdef double total = 0.0
 cdef double tmp
 cdef SIZE_t k
 cdef SIZE_t c
 for k in range(n_outputs):
 entropy = 0.0
 for c in range(n_classes[k]):
 tmp = label_count_total[c]
 if tmp > 0.0:
 tmp /= weighted_n_node_samples
 entropy -= tmp * log(tmp)
 total += entropy
 label_count_total += label_count_stride
 return total / n_outputs
 cdef void children_impurity(self, double* impurity_left,
 double* impurity_right) nogil:

https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/tree/_tree.pyx#L368

6

 """Evaluate the impurity in children nodes, i.e. the impurity of the
 left child (samples[start:pos]) and the impurity the right child
 (samples[pos:end])."""
 cdef double weighted_n_node_samples = self.weighted_n_node_samples
 cdef double weighted_n_left = self.weighted_n_left
 cdef double weighted_n_right = self.weighted_n_right
 cdef SIZE_t n_outputs = self.n_outputs
 cdef SIZE_t* n_classes = self.n_classes
 cdef SIZE_t label_count_stride = self.label_count_stride
 cdef double* label_count_left = self.label_count_left
 cdef double* label_count_right = self.label_count_right
 cdef double entropy_left = 0.0
 cdef double entropy_right = 0.0
 cdef double total_left = 0.0
 cdef double total_right = 0.0
 cdef double tmp
 cdef SIZE_t k
 cdef SIZE_t c
 for k in range(n_outputs):
 entropy_left = 0.0
 entropy_right = 0.0
 for c in range(n_classes[k]):
 tmp = label_count_left[c]
 if tmp > 0.0:
 tmp /= weighted_n_left
 entropy_left -= tmp * log(tmp)
 tmp = label_count_right[c]
 if tmp > 0.0:
 tmp /= weighted_n_right
 entropy_right -= tmp * log(tmp)
 total_left += entropy_left
 total_right += entropy_right
 label_count_left += label_count_stride
 label_count_right += label_count_stride
 impurity_left[0] = total_left / n_outputs
 impurity_right[0] = total_right / n_outputs

Citations
1. Chang, C.-C. and C.-J. Lin, LIBSVM: a library for support vector machines. ACM Transactions on
Intelligent Systems and Technology (TIST), 2011. 2(3): p. 27.

2. Golub, T.R., et al., Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring. science, 1999. 286(5439): p. 531-537.

3. Guyon, I., et al. Result analysis of the nips 2003 feature selection challenge. in Advances in
Neural Information Processing Systems. 2004.

4. Bache, K. and M. Lichman, UCI machine learning repository. URL http://archive.ics.uci.edu/ml,
2013. 19.

5. Network, C.G.A.R., Comprehensive molecular characterization of urothelial bladder carcinoma.
Nature, 2014. 507(7492): p. 315-322.

7

6. Network, C.G.A., Comprehensive molecular characterization of human colon and rectal cancer.
Nature, 2012. 487(7407): p. 330-337.

7. Brennan, C.W., et al., The somatic genomic landscape of glioblastoma. Cell, 2013. 155(2): p. 462-
477.

8. Network, C.G.A., Comprehensive genomic characterization of head and neck squamous cell
carcinomas. Nature, 2015. 517(7536): p. 576-582.

9. Network, C.G.A.R., Comprehensive molecular profiling of lung adenocarcinoma. Nature, 2014.
511(7511): p. 543-550.

10. Network, C.G.A.R., Comprehensive molecular characterization of gastric adenocarcinoma.
Nature, 2014.

Supplementary Figure Legends
Figure A | Expanded version of Figure 1, which also includes results for RF-ace, and for CloudForest
applied to the datasets after categorical features have been transformed into binary features using one-
hot encoding (CF on bin. cat. data).

Figure B | Classification performance of CloudForest on the clinical dataset with various extensions.

Figure C | Classification performance (top) and training time (bottom) for SciKit-Learn's
RandomForestClassifier (SKL) and CloudForest with and without various extensions on three LIBSVM
datasets; leukemia (left), gisette (middle) and poker (right).

Figure D | Comparison between CloudForest and SkiKit-Learn in terms of prediction performance for six
TCGA datasets with varying numbers of missing values (x-axis).

Figure E | Comparison between CloudForest and SkiKit-Learn in terms of computation time for six TCGA
datasets with varying numbers of missing values (x-axis).

0.1 0.2 0.3 0.4

RFace

R’s randomForest

SciKit−Learn

CF on bin. cat. data

CloudForest

 0.36644

 0.33848

 0.34302

 0.35634

 0.34281

Balanced error

Classification performance on a clinical dataset

10
1

10
2

10
3

10
4

 70.8

 18074

 34.697

 33.007

 26.423

Training time (s)

Training speed on a genomic dataset

Figure A in S1 File

Figure A in S1 File

0.1 0.2 0.3 0.4

CF −ace 10 −cutoff .05 −balance=true

CF −ace 10 −cutoff .05

CF −balance=true

CF −evaloob

CF −rfweights ’{"1":2,"0":1}’

CF

 0.34662

 0.34207

 0.31649

 0.35518

 0.33335

 0.34625

Balanced error

Classification performance on clinical dataset

Figure B in S1 File

0 0.1 0.2

SKL

CF −ace 10 −cutoff .05 −balance=true

CF −ace 10 −cutoff .05

CF −balance=true

CF −evaloob

CF

 0.20588

 0.088235

 0.14706

 0.11765

 0.17647

 0.17647

Error on test set

leukemia

0 5 10 15

SKL

CF −ace 10 −cutoff .05 −balance=true

CF −ace 10 −cutoff .05

CF −balance=true

CF −evaloob

CF

 4.7531

 14.2764

 12.7407

 1.2182

 2.0723

 1.1055

Training time (s)

0 0.02 0.04

 0.032

 0.026

 0.027

 0.027

 0.033

 0.03

Error on test set

gisette

0 1000 2000 3000

 185.4925

 2692.8242

 2617.6868

 237.2203

 540.6026

 229.8232

Training time (s)

0 0.5 1

 0.37355

 0.93291

 0.49879

 0.44648

 0.40651

 0.36508

Error on test set

poker

0 1000 2000 3000

 30.4364

 2153.6938

 1966.9793

 187.8069

 2287.6814

 345.2164

Training time (s)
Figure C in S1 File

0 1 5 10 25 50
0.25

0.3

0.35

0.4

0.45

0.5

C
la

ss
if

ic
at

io
n

er
ro

r

Percentage of missing values

Classification performance on BLCA TCGA dataset

0 1 5 10 25 50
0.2

0.25

0.3

0.35

0.4

C
la

ss
if

ic
at

io
n

er
ro

r

Percentage of missing values

Classification performance on CRC TCGA dataset

0 1 5 10 25 50
0.2

0.25

0.3

0.35

0.4

C
la

ss
if

ic
at

io
n

er
ro

r

Percentage of missing values

Classification performance on GBM TCGA dataset

0 1 5 10 25 50

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Percentage of missing values

C
la

ss
if

ic
at

io
n

er
ro

r

Classification performance on HNSC TCGA dataset

SciKit−Learn
CloudForest −balance=true
CloudForest

0 1 5 10 25 50
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

C
la

ss
if

ic
at

io
n

er
ro

r

Percentage of missing values

Classification performance on LUAD TCGA dataset

0 1 5 10 25 50
0.2

0.22

0.24

0.26

0.28

0.3

0.32

C
la

ss
if

ic
at

io
n

er
ro

r

Percentage of missing values

Classification performance on STAD TCGA dataset

Figure D in S1 File

0 1 5 10 25 50
5

6

7

8

9

10

11

12
T

ra
in

in
g

tim
e

(s
)

Percentage of missing values

Training speed on BLCA TCGA dataset

0 1 5 10 25 50
8

9

10

11

12

13

T
ra

in
in

g
tim

e
(s

)

Percentage of missing values

Training speed on CRC TCGA dataset

0 1 5 10 25 50
5

6

7

8

9

10

11

12

T
ra

in
in

g
tim

e
(s

)

Percentage of missing values

Training speed on GBM TCGA dataset

0 1 5 10 25 50
6

8

10

12

14

16

18

20

Percentage of missing values

T
ra

in
in

g
tim

e
(s

)

Training speed on HNSC TCGA dataset

SciKit−Learn
CloudForest −balance=true
CloudForest

0 1 5 10 25 50
10

15

20

25

30

35

40

T
ra

in
in

g
tim

e
(s

)

Percentage of missing values

Training speed on LUAD TCGA dataset

0 1 5 10 25 50
10

12

14

16

18

20

T
ra

in
in

g
tim

e
(s

)

Percentage of missing values

Training speed on STAD TCGA dataset

Figure E in S1 File

	Supplement
	Documentation
	Experimental details
	For Figure 1 and Figure A
	For Figure B
	For Figure C
	For Figure 2 and Figures D and E

	Code snippets comparing CloudForest and SciKit-Learn
	Citations
	Supplementary Figure Legends

	FigA
	FigB
	FigC
	FigD
	FigE

