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1 Segmentation examples in individual subjects

Example segmentation results for the left putamen in five subjects from the
HCP80 dataset are shown in Fig. S1. The segmentation procedure used the T1-
weighted, T2-weighted and FA images, but only the T1-weighted volume is used
for visualisation. Results for the combination of the caudate nucleus and nucleus
accumbens are shown in Fig. S2. In this case, T1- and T2-weighted images were
used for segmentation, as these contained adequate contrast. In addition, as
the ventricles are invisible on an FA image, the corpus callosum represented the
closest image edge for parts of the caudate nucleus; this introduced an ambiguity
in finding the actual boundary of the caudate nucleus.

Results for the globus pallidus in the same dataset are displayed in Fig. S3.
This is an example of a structure where there is no adequate contrast in the T1-
weighted volume. In the coronal slices, the superior boundary is clearly visible
in the T2-weighted volume. The medial boundary is not as clear on this volume
and appears to be detected mainly on the basis of the FA-contrast.

Figure S4 shows a qualitative comparison of MIST with the mesh-based
output from FIRST. MIST compares favourably and clearly improves on the
output from FIRST in a number of areas. The segmentation of the globus
pallidus illustrates the advantage of multimodal segmentation; FIRST fails to
estimate the medial boundaries of the structure, whereas the added contrast in
the T2-weighted and FA images allow the new method to correctly estimate all
boundaries.

Examples of the structures that were segmented in the 7T dataset are shown
in Figure S5. The additional contrast offered by the high resolution T ∗2 -weighted
images, as well as the QSM ones, offers a clear advantage over segmentation
based on just the T1-weighted volume.
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Figure S1: Segmentation of the left putamen in the HCP80 dataset in five
subjects. Top three rows: axial slices, bottom three rows: coronal slices.
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Figure S2: Segmentation of the left caudate nucleus and nucleus accumbens in
the HCP80 dataset in five subjects. Top two rows: axial slices, middle two rows:
sagittal slices, bottom two rows: coronal slices.
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Figure S3: Segmentation of the left globus pallidus in the HCP80 dataset in five
subjects, overlayed on the T1-weighted, T2-weighted and FA volumes. Top three
rows: axial slices, bottom three rows: coronal slices. The putamen is shown in
blue for reference.
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Comparison between MIST and FIRST

Axial Coronal Axial Coronal

Figure S4: Comparison between MIST (red) and FIRST (blue) of segmenta-
tions of the putamen and globus pallidus in ten subjects of the HCP80 dataset,
displayed on the T2-weighted volume. Columns 1 and 3: axial slices, columns 2
and 4: coronal slices. 6
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Example segmentations in 7T dataset
Axial Coronal

Figure S5: Segmentation of the putamen (left: axial, right: coronal), the cau-
date nucleus and nucleus accumbens (left: sagittal, right: coronal) and the
globus pallidus (left: axial, right: coronal) in one subject in the 7T dataset,
overlaid on the T1-weighted, T ∗2 -weighted and QSM volumes.
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2 Details of the intensity model

Logarithm of the probability and its derivatives The logarithm of the
probability Eq. 17 itself is

log p(M,L, θ, δ1, . . . , δS |z1, . . . , zS)

= const.+

Nr∑
m=0

Nr∑
r=0

log N(µmr|µ0
mr, n0Λmr)

+ log Wi(Λmr|α0, β0
mr) +

Nm∑
m=0

log Dir(θm|α)

+

N∑
s=0

log

(
∆∑
δ=0

N(δ|µδ, λδ)
Nm∏
m=0

Nr∑
r=0

N(zsm|µδmr,Λδ
mr)Cat(r|θm)

)
. (1)

The derivatives with respect to its parameters are

d

dθnj
log p(M,L, θ, δ1, . . . , δS |z1, . . . , zS) =

N∑
s=0

1

Zs

[
∆∑
δ=0

N(δ|µδ, λδ)

 Nm∏
m=0
m 6=n

Nr∑
r=0

N(zsm|µδmr,Λδ
mr)Cat(r|θm)


×
(
N(zsn|µδnj ,Λδ

nj)−N(zsn|µδnk+1,Λ
δ
nk+1)

) ]

+
1− αk+1

1−
∑k
`=1 θn`

+
αj − 1

θnj
(2)

for the mixing coefficients,

d

dµnj
log p(M,L, θ, δ1, . . . , δS |z1, . . . , zS) =

N∑
s=0

1

Zs

[
∆∑
δ=0

N(δ|µδ, λδ)

 Nm∏
m=0
m 6=n

Nr∑
r=0

N(zsm|µδmr,Λδ
mr)Cat(r|θm)


× Cat(j|θn)N(zsn|µδnj ,Λδ

nj)Uδ

(
(zsn − µδnj)TΛδ

nj

) ]
− n0(µTnj − µ0

nj
T

)Λnj (3)
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for the component means and

d

dΛnj
log p(M,L, θ, δ1, . . . , δS |z1, . . . , zS) =

N∑
s=0

1

Zs

[
∆∑
δ=0

N(δ|µδ, λδ)

 Nm∏
m=0
m 6=n

Nr∑
r=0

N(zsm|µδmr,Λδ
mr)Cat(r|θm)


× Cat(j|θn)N(zsn|µδnj ,Λδ

nj)
1

2
Uδ

(
Λδ
nj

−1 − (zsn − µδnj)(zsn − µδnj)T
)]

+ (α− k

2
)Λ−1

nj − β
0 − n0

2
(µnj − µ0

nj)(µnj − µ0
nj)

T (4)

for the component covariances. The derivatives with respect to the diagonal of
the matrix Dmr as defined in the main text are given by the diagonal of

G−1(
d

dΛnj
log p(M,L, θ, δ1, . . . , δS |z1, . . . , zS))G−1.

In these derivatives,

Zs =

∆∑
δ=0

N(δ|µδ, λδ)
Nm∏
m=0

Nr∑
r=0

N(zsm|µδmr,Λδ
mr)Cat(r|θm). (5)

The notation Uδ(x) is used to indicate that the lower-dimensional vector x
is zero-padded to match a longer vector in the way that is appropriate for
displacement δ.
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3 Details of the shape model

After the intensity models for all vertices have been trained, we need to train
the shape part of the model. As explained in the main text, this is done using
the displacements found in the training data. These are found by simply select-
ing the most probable integer displacements given the MAP estimates of the
parameters of the intensity models. The shape model is a simple multivariate
normal distribution and we can use the standard inferential process as given by,
for example, Bernardo and Smith (1994) to train it. This implies that we need
to use a Normal-Wishart prior for the mean and precision parameters of the
distribution. We are interested in the posterior predictive distribution

p(δ|δz0 , . . . , δzNt
) =

∫
µs

∫
Λs

p(δ|µs,Λs)p(µs,Λs|δz0 , . . . , δzNt
)dµsdΛs (6)

where δz0 , . . . , δ
z
Nt

denote the displacements observed in the training data and
where

p(µs,Λs|δz0 , . . . , δzNt
) =

p(δz0 , . . . , δ
z
Nt
|µs,Λs)p(µs,Λs)

p(δz0 , . . . , δ
z
Nt

)
(7)

with the Normal-Wishart prior p(µs,Λs) = NN (µs0, n
s
0Λ

s)WiN (Λs|α, β). The
standard result is:

p(δ|δz0 , . . . , δzNt
) = StN (δ|µst ,Λs

t , 2αt) , (8)

where Nt is the number of training datasets and with

µst =
n0µ

s
0 +Ntδt

n0 +Nt

Λs
t =

n0 +Nt
n0 +Nt + 1

αt(β
s
t )−1

βt = β +
1

2

(
S +

Ntn0

Nt + n0
(µ0 − δz)(µ0 − δz)T

)
αt = α+

1

2
Nt −

1

2
(N − 1),

where δz = 1
Nt

∑Nt

j=1 δ
z
j and S =

∑Nt

j=1(δzj − δz)(δzj − δz)T . As before, N is the
number of vertices, i.e. the dimensionality of the distribution.

To produce a segmentation for a new dataset, we need to find the MAP
estimate of δ. We use an approach similar to the iterated conditional modes
algorithm (Besag, 1986). To find the MAP estimate for δ, we sequentially find
maxima of the conditional distributions of its components δi given the other
components. This procedure is repeated until convergence. The conditional
probability of the displacement at a single vertex is the product of the con-
ditional distribution of the shape model given all other components and the
intensity model for that vertex. Up to a multiplicative constant, the conditional
probability for vertex i is

p(δi|δic , Yi,Mi, Li, θi, µ
s
i ,Λ

s)

∝ St(δi|µi|ic , λi|ic , αi|ic)p(Yi|δi,Mi, Li, θi), (9)
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where the subscript ic denotes all components except i and the second factor on
the right-hand side is the intensity model for vertex i. The parameters of this
distribution are

µsi|ic = µi − (Λsii)
−1Λs

iic(δic − µsic) (10)

Λsi|ic = Λsii

[
α+N − 1

α+ (δic − µsic)(Σs
icic)−1(δic − µsic)T

]
(11)

αi|ic = α+N − 1, (12)

where Σs
icic = ((Λs)−1)icic . This distribution is a consequence of the conditional

distributions of a subset of the multivariate Student distribution given the other
part, as described in, for example, Bernardo and Smith (1994).

The intensity models are only defined for integer displacements. In practice,
we evaluate both the shape and intensity model factors at the points correspond-
ing to the integer values of δi and optimise discretely. There is a possibility that
the final segmentation mesh self-intersects. As the reference mesh is constructed
in such a way that there are no self-intersections, we remove them from the final
result by incrementally deforming a mesh from the reference shape to the fit-
ted mesh. At each small increment we use VTK’s vtkSelectEnclosedPoints

filter to test, for each vertex, whether it can be updated without generating a
self-intersection. If the proposed displacement moves the vertex inwards with
respect to the local surface then we know that the new point should be on the
inside of the undeformed mesh (the mesh as it was before applying this update).
If this proposed location is reported as being outside the mesh then it must have
passed through some other part of the mesh and generated a self-intersection, in
which case this point is held fixed. Otherwise, the proposed update is applied.
Self-intersections for vertices that are being moved outward with respect to the
reference mesh are detected in a similar fashion, but rejected if the proposed
location is inside the undeformed mesh.
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