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ABSTRACT
This supplementary material includes the details about the

identification condition for Σln y and more analysis for both simulation
studies and real data. In the simulation studies, we show that
SparCC is robust for the tuning parameter choice, the consistent
accuracy and reproducibility are not good measurements to judge the
effect of estimated methods, and CCREPE’s performance is similar
to SparCC. In the real data analysis, we first add more detailed
analysis including time comparison, shape explore through degree
distribution, influence of reproducibility for the choice of top edges,
the correlation of the estimated result between CCLasso and SparCC
for HMP datasets. Then we use CCLasso and SparCC to estimate
the interaction network of 15 microbes from an acid mine drainage
environment. We find that SparCC gets too many nonsense edges
and CCLasso can get more informational connections than SparCC.

1 IDENTIFICATION CONDITION
We’ll proof that there is at most one sparse network Σln y whose
edge density is no greater than 1

2
− 1

p−1
corresponding to the same

Σln x, and this sparse density condition can not be relaxed.
Suppose there are 2 sparse matrices Σ1 and Σ2 for Σln y

corresponding to the same Σln x and assume the number of nonzero
entries in the lower triangle part of both these two sparse matrces is
less than s. Then we have

Σln x = Σ1 − a11
T − 1aT1 = Σ2 − a21

T − 1aT2 .

So
Σ1 − Σ2 = (a1 − a2)1T + 1(a1 − a2)T .

We can find that if a1 = a2 then Σ1 = Σ2. Since there is at most 2s
nonzero in the lower triangle part, then a1 − a2 = 0 is true if and

∗to whom correspondence should be addressed

only if
p(p− 1)

2
− 2s ≥ p.

So the sparse degree s should be satisfied

s ≤ p(p− 3)

4
,

and combined with the total possible edge number p(p−1)
2

, we can
get that if the edge density is no greater than 1

2
− 1

p−1
, then there

is only one possible Σln y corresponding to Σln x and this sparse
density condition can not be relaxed.

2 SIMULATION STUDIES
2.1 Robust of tuning parameter’s choice for SparCC
It’s not feasible to learn the tuning parameters of SparCC from
cross validation of the data since there is no loss function in
this method. But SparCC’s result is not sensitive for the tuning
parameter’s choice since only one strongest correlated pair larger
than given threshold α is removed in each iteration. Both the
simulation studies and HMP datasets use the default threshold
parameter α = 0.1. Fig. S1 is the ROC curves for SparCC with
different tuning parameters α = 0.05, 0.1, 0.5 for different
correlation structures. SparCC is robust for the tuning parameter α
from the simulation result.

2.2 Consistent accuracy and reproducibility for
simulation data

Since there is no true answer for the real data, there is not a
good way to compare the performance between CCLasso and
SparCC as the consistent accuracy and reproducibility may not
be a nice criteria when the results from a subset of samples
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Fig. S1. ROC curves of SparCC with different tuning parameters (sample
size is fixed as 300). The true positive rate is averaged over 100 replications
after fixing the false positive rate and the gray line is the baseline reference.

Table S1. Consistent accuracy and reproducibility for CCLasso and
SparCC from simulation data of the block model. (The results are
averages over 20 replication runs with standard deviations in brackets.)

Sample Size Accuracy Reproducibility
CCLasso SparCC CCLasso SparCC

100 2.92(0.00) 4.96(0.17) 0.80(0.31) 0.60(0.02)
200 2.19(0.06) 3.43(0.13) 0.65(0.02) 0.65(0.02)
300 2.01(0.05) 2.80(0.10) 0.69(0.02) 0.68(0.02)
500 1.59(0.07) 2.17(0.06) 0.75(0.02) 0.73(0.02)

is compared to all samples. We compare CCLasso and SparCC
through the consistent accuracy and reproducibility for simulation
data. The block model is used to explain the performance of
CCLasso and SparCC (Table S1). We can find that the difference
of the reproducibility of CCLasso and SparCC is negligible and the
consistent accuracy is almost the same for these two methods. But
from the main text we know CCLasso works better than SparCC
in general from the ROC and the distance between estimated
correlation matrix and the true one.

2.3 CCREPE is similar to SparCC from simulation
studies

CCREPE is based on the distribution comparison between
permutation and bootstrap to infer the significance of association
for compositional data. The permutation and bootstrap are very
common to infer the significance in statistics. We cannot get an
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Fig. S2. ROC curves of CCREPE and CCLasso/SParCC with sample size
equals 200.

available correlation strength measurement among the components
from CCREPE but only a significant p-value. So we only compare
the ROC curves between CCREPE and CCLasso/SparCC in Fig. S2
for simulations studies. We find that the ROC curve of CCREPE is
similar to SparCC in the simulation studies. (Since the permutation
and bootstrap of CCREPE are memory consumption and our PC is
out of memory for large sample size, only sample size 200 is used
to compare the performance among these three algorithms.)

3 REAL DATA
3.1 HMP datasets
3.1.1 Time comparison between CCLasso and SparCC for HMP
datasets SparCC is much faster than CCLasso in general since
there are several optimization procedures from the cross validation
of CCLasso. We think the run time for CCLasso is acceptable for
real problems such as HMP datasets. Table S2 show the run time
comparison between CCLasso and SparCC for HMP datasets (PC:
Intel(R) Core(TM) i5-2400 CPU, 4 GB MEM). SparCC is faster of
the magnitude order of 2 than CCLasso in general. But the run time
of CCLasso is in the acceptable range.

3.1.2 Shape explore of microbial correlation network for HMP
datasets It is difficult to determine how natural networks are
shaped since there is no clear boundary for network shapes. We
explore the shapes of microbial correlation networks for HMP
through the degree distribution. Fig. S3 shows the degree
distributions of inferred correlation networks through CCLasso and
SparCC with a common threshold 0.2. We can find there are more
isolated nodes for CCLasso than SparCC in general.

3.1.3 Robust of reproducibility for top edges’ choice There are
negligible changes of the HMP datasets evaluation for using other
top edges such as 10% and 40% while 25% is used in the main
text. Table S3 shows the reproducibility for CCLasso and SparCC
with different top edges 10%, 40%. We can find the reproducibility
is robust for the top edges’ choice.
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Table S2. Run time (seconds) of CCLasso and SparCC
for HMP datasets. (The results are averages over 10

replication runs with standard deviations in brackets.)

Sample Size No. OTU CCLasso SparCC
152 34 18.73(0.09) 0.26(0.04)
193 25 20.45(0.25) 0.24(0.01)
196 36 17.29(0.35) 0.31(0.02)
197 36 28.37(0.27) 0.29(0.01)
51 53 22.09(0.10) 0.27(0.01)
123 31 9.29(0.07) 0.21(0.02)
45 21 19.84(0.15) 0.11(0.01)
203 38 63.29(0.28) 0.31(0.00)
22 15 36.14(0.16) 0.07(0.01)
54 54 14.93(0.08) 0.27(0.01)
85 38 10.22(0.22) 0.21(0.01)
184 41 29.58(0.49) 0.32(0.02)
190 32 12.95(0.04) 0.27(0.01)
205 41 118.60(1.28) 0.33(0.01)
207 39 65.51(0.38) 0.32(0.01)
197 39 46.45(0.13) 0.32(0.02)
207 35 70.88(0.45) 0.30(0.01)
52 26 14.99(0.05) 0.13(0.01)
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Fig. S3. Degree distribution of inferred correlation networks through
CCLasso and SparCC (with a threshold 0.2).

3.1.4 Correlation of estimated results between CCLasso and
SparCC for HMP datasets Since consistent accuracy and
reproducibility can only compare the algorithm sensitivity between
CCLasso and SparCC for HMP datasets, we explore the relationship
between these two methods from the whole estimated correlation
matrix. Table S4 shows the Pearson and Spearman correlations of
the estimation matrix between CCLasso and SparCC. We find all
the correlations between CCLasso and SparCC are very high except
some body sites such as right antecubital fossa.

Table S3. Reproducibility for CCLasso and SparCC of different body sites from
HMP data with different top edges. (The results are the averages over 20 replication
runs with standard deviations in brackets.)

Body Sample Reproducibility (top 10%) Reproducibility (top 40%)
Site Size CCLasso SparCC CCLasso SparCC
AntNar 152 0.68(0.07) 0.66(0.05) 0.70(0.03) 0.72(0.04)
AKerGin 193 0.70(0.06) 0.60 (0.06) 0.81 (0.03) 0.80 (0.03)
BucMuc 196 0.67(0.05) 0.55 (0.04) 0.78 (0.02) 0.77 (0.02)
HarPal 197 0.78(0.05) 0.68 (0.05) 0.80 (0.02) 0.78 (0.02)
LAntFos 51 0.58 (0.05) 0.57 (0.05) 0.68 (0.04) 0.66 (0.04)
LRetCre 123 0.64(0.07) 0.65 (0.05) 0.71 (0.03) 0.73 (0.04)
MidVag 45 0.61 (0.09) 0.58 (0.10) 0.69 (0.06) 0.71 (0.05)
PalTon 203 0.78 (0.03) 0.73 (0.03) 0.85 (0.01) 0.84 (0.02)
PosFor 22 0.60(0.15) 0.54 (0.10) 0.65 (0.07) 0.68 (0.09)
RAntFos 54 0.53(0.07) 0.52 (0.06) 0.64 (0.04) 0.59 (0.10)
RRetCre 85 0.56 (0.05) 0.57 (0.07) 0.67 (0.03) 0.67 (0.03)
Saliva 184 0.74 (0.03) 0.68 (0.03) 0.80 (0.02) 0.78 (0.01)
Stool 190 0.69 (0.06) 0.60 (0.07) 0.75 (0.03) 0.74 (0.03)
SubPla 205 0.78 (0.03) 0.72 (0.03) 0.87 (0.02) 0.84 (0.02)
SupPla 207 0.78 (0.04) 0.64 (0.04) 0.86 (0.02) 0.85 (0.02)
Throat 197 0.82 (0.03) 0.75 (0.03) 0.84 (0.02) 0.82 (0.02)
TonDor 207 0.81 (0.04) 0.65 (0.05) 0.88 (0.02) 0.86 (0.02)
VagInt 52 0.58 (0.07) 0.54 (0.07) 0.67 (0.05) 0.69 (0.06)

Table S4. Pearson and Spearman correlations between CCLasso
and SparCC for the HMP datasets.

Body Site Sample Size No. OTU Pearson Spearman
AntNar 152 34 0.93 0.93
AKerGin 193 25 0.96 0.96
BucMuc 196 36 0.96 0.97
HarPal 197 36 0.97 0.97
LAntFos 51 53 0.84 0.83
LRetCre 123 31 0.9 0.91
MidVag 45 21 0.9 0.92
PalTon 203 38 0.96 0.97
PosFor 22 15 0.9 0.89
RAntFos 54 54 0.71 0.66
RRetCre 85 38 0.85 0.85
Saliva 184 41 0.97 0.97
Stool 190 32 0.88 0.9
SubPla 205 41 0.98 0.98
SupPla 207 39 0.95 0.96
Throat 197 39 0.98 0.98
TonDor 207 35 0.96 0.96
VagInt 52 26 0.93 0.94

3.2 Acid mine drainage dataset
It is interesting to explore the interaction network of microbes
in some special environment. We use the proteome composition
data using species-assigned protein counts from 28 microbial
communities collected from an acid mine drainage environment (Mueller
et al., 2010). Figure S4 is the interaction network inferred from
SparCC and CCLasso. We can find that SparCC has detected
too many strong connections between unassigned groups and
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Fig. S4. Correlation network inferred from CCLasso and SparCC for
acid mine drainage data. (The solid line means positive while dashed
negative. And the wider the edge, the stronger the correlation. The
correlation thresholds for CCLasso and SparCC are set 0.1 and 0.3 since
the identification condition claims that at most 45 edges exist for only one
possible sparse correlation matrix.)

others. Both CCLasso and SparCC have detected the triangle
relationship among Ferro. Type I, Ferro. Type II and G-plasma.
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