SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1. Retroviral vectors express miR-9 and miR-181.

IMR90 cells were infected with the indicated vectors and the expression of miR-9 or miR-181 assessed by gRT-PCR.

Supplementary Figure 2. Controls for CBX7 overexpression and knockdown.

(A) Overexpression of mouse Cbx7 results in p16^{INK4a} repression. qRT-PCR was carried out in cells used in the experiment described in Fig 2C, to assess the levels of *INK4a* mRNA (encoding for p16^{INK4a} and the exogenously expressed mouse Cbx7 (*Cbx7*). (B) Knockdown of CBX7 results in p16^{INK4a} induction. qRT-PCR was carried out in cells used in the experiment described in Fig 2D-E, to assess *INK4a* and CBX7 mRNA levels.

Supplementary Figure 3. Characterization of the miR-9 induced arrest. (A) IMR90 cells were infected with control or miR-9 expressing vectors and the expression of the indicated genes was assessed by qRT-PCR. (B-C) The expression of (B) p21^{CIP} and (C) p53 was assessed by IF, and the percentage of positive cells were quantified. (D) miR-9 induces p16^{INK4A} expression in IMR90 cells. p16^{INK4a} expression was assessed by IF in IMR90 cells transfected with miR-9 or miR-181 mimics or with anti-miR-9.

Supplementary Figure 4. Analysis of p16^{INK4a}-deficient Leiden fibroblasts suggests that miR-9-induced senescence is p16^{INK4a}-dependent.

IMR90 and p16^{INK4a}-defective Leiden fibroblasts (Brookes *et al.* 2002) were infected with pMSCV-miR-9 or empty vector. (A) Immunofluorescence for p16^{INK4a} was performed in both cells types. Quantification (left) and representative images (right) are shown. (B) Cells were seeded at

1

low density and stained with crystal violet after 2 weeks. Quantification (left) and representative images (right) are shown. (C) BrdU incorporation was assessed in the indicated cells.

IF: p16^{INK4a}

(B)

