WTΔT1

WTΔT2

WT+T3

SC

SC∆T2

SC∆T1

SC+T3

Expanded View Figures

 A
 B

 11
 12
 13
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 <td

Figure EV1. Characterization of GalNAc-T expression in HepG2^{WT} and KO model cell lines.

A ICC of HepG2^{WT} cells with MAbs to a panel of human GalNAc-Ts. Scale bar, 20 μm.

B Characterization of generated isogenic HepG2 KO cell lines by ICC with MAbs to GaINAc-Ts and Tn (clone 5F4). The intensity of GaINAc-T3 labeling and subcellular localization was essentially identical to what we have previously demonstrated in a variety of human cancel cell lines expressing T3 [8]. Scale bar, 20 μm.

Figure EV2. Differential O-glycoproteomes in HepG2^{SC}.

- A Column diagram showing the relative distribution of identified glycoproteins between TCL, SEC, and overlap between TCL and SEC in all samples HepG2^{SC} Δ T1, HepG2^{SC} Δ T2, and HepG2^{SC}+T3, illustrating that a comparable number of glycoproteins were identified in the three paired sample sets.
- B Subcellular localization ontology of identified O-glycoproteins from HepC2^{5C} showing an overrepresentation of extracellular, membrane bound, Golgi- and ER-resident proteins. Interestingly, we identified nuclear- and cytoplasmic-resident proteins, albeit at much lower frequencies. GalNAc and GlcNAc are exact isobars, and in this type of O-glycoproteomics studies, there is potential for including contaminating O-GlcNAc glycopeptides [9,10]. Upon closer examination, approximately 50% of these proteins had multiple GO annotations, including terms relating to the secretory pathway. However, manual inspection of the remaining proteins revealed that these had no annotations to the secretory pathway and were predicted not to have signal peptide sequences, suggesting that these did represent contaminating glycopeptides. These proteins were excluded from the statistical analysis and listed separately (Table EV2).
- C, D Venn diagrams showing the distribution of all quantified peptides (C) or all quantified mono-glycosylated peptides (D) between HepG2^{SC} Δ T1, HepG2^{SC} Δ T2, and HepG2^{SC}+T3.

Figure EV3. Considerations for isoform specificity.

- A Schematic depiction of how low and high M/L ratios and singlets may occur in both directions. Mono-glycosylated peptides with isoform-specific sites may be lost or downregulated (M/L ratio ≤ -1 (Log₁₀)), and glycopeptides with two close adjacent O-glycosites, of which one is isoform-specific, may result in *de novo* appearance or upregulated (M/L ratio ≥ 1 (Log₁₀)) of a mono-glycosylated peptide with the remaining non-isoform-specific site.
- B Histogram showing the proportion of mono-glycosylated peptides that have potential glycosylation sites (sites previously identified in 12 human cell lines [2]) within the peptide sequence (green). Blue, total number of quantitated monoglycosylated peptides. A slightly higher proportion of the upregulated singlet glycopeptides for GalNAc-T1 (67% vs. 58%), GalNAc-T2 (72% vs. 51%), and the downregulated glycopeptides for GalNAc-T3 KI (60% vs. 41%), had previously been identified as glycopeptides with two or more O-glycosites, indicating that at least some of these sites may appear as the result of loss of (T1/T2) or gain of (T3) an isoform-specific glycosite.
- C Distribution of isoform-specific sites per glycoprotein.

Figure EV4. In vitro GalNAc-T enzyme assay validation of candidate isoform-specific O-glycosites.

- A 20-mer peptides designed to cover identified candidate isoform-specific O-glycosites as acceptor substrates for recombinant human GalNAc-T1, GalNAc-T2, and GalNAc-T3 enzymes (see Table EV3 for a summary of data). Total number of peptides tested for each isoform is shown in parenthesis. Since GalNAc-T3 is not endogenously expressed in HepG2 cells, we disregarded overlapping activity of this enzyme with a few substrates in qualifying isoform specificities of GalNAc-T1 and GalNAc-T2 in the HepG2 cellular context. Blue color marks isoform-specific peptides, dark gray marks peptides glycosylated by multiple isoforms, including the specific isoform (Tx), and light gray color the peptides glycosylated by multiple isoforms excluding the specific isoform (Tx). In testing GalNAc-T1 candidate isoform-specific sites, only 4/14 peptide designs served as substrates for any of the enzyme isoforms tested, and of these, 3/4 were found to be specific substrates for T1. For GalNAc-T2, 23/27 peptides were used by the enzymes tested and of these, 19/23 were specific for T2. For GalNAc-T3, 14/18 peptides served as substrates for the tested enzymes and of these, 9/14 were specifically glycosylated by T3.
- B For comparative testing of the glycosites that were not predicted to be isoform-specific in the HepG2^{SC}ΔT1 analysis, we found that 2/35 peptides were weak substrates for T1, 14/35 was glycosylated by several isoforms, and 19/35 were not glycosylated by any isoform tested. For the isoform non-specific sites found in the HepG2^{SC}ΔT2, 0/38 peptides were specific for T2, 20/38 were glycosylated by several isoforms and 18/38 did not serve as substrates for any isoforms. For HepG2^{SC}ΔT3, 0/32 peptides were specific for T3, 16/32 were glycosylated by several isoforms and 16/32 were not glycosylated *in vitro*.
- C Substantial efforts have been devoted to searching for consensus motifs for O-GalNAc glycosylation [11]. We therefore aligned the candidate isoform-specific glycosite sequences and analyzed these by frequency plots showing the relative frequency of amino acids \pm 10 sites from GalNAc-T1, GalNAc-T2, or GalNAc-T3 isoform-specific glycosylation sites. For GalNAc-T1-specific sites, we demonstrated a preference for acidic amino acids in position +1 and -3 and for basic His in position +2 and -4. For GalNAc-T2-specific sites, we found a more clear preference (4- to 12-fold enrichment) for Pro in positions -1 and -3 and Trp in position -2. Interestingly, we also observed a diminishment of certain charged residues in position -3 to +1, as His and Asp residues are never found in these positions. For GalNAc-T3-specific sites, we found a subtle enrichment for basic and hydrophobic residues in positions -1, -2, +1, and +3. Interestingly, in general methionine, cysteine and the large bulky tryptophan residues are under-represented in sequences surrounding isoform-specific sites of all three isoforms. Overall, these results are well in line with previous *in vitro* glycosylation studies [11], and support the idea that isoform discriminating amino acid preference exists at least to some extent.

Figure EV4.

Figure EV5. RNAseq transcriptome analysis of isogenic HepG2 cells.

A, B Venn diagram showing distribution of up- (A) and downregulated (B) genes between HepG2^{WT} Δ T1, HepG2^{WT} Δ T2, and HepG2^{WT} +T3 compared to HepG2^{WT}.

Figure EV6. Differential transcriptomics and Gene Ontology Enrichment analysis.

A–C RNAseq expression data plotted for HepG2^{WT}/HepG2^{WT}ΔT1 (A), HepG2^{WT}/HepG2^{WT}ΔT2 (B), and HepG2^{WT}/HepG2^{WT}+T3 (C) with expression level as a function of fold change. Top 10 biological process ontology terms among up- or downregulated transcripts are shown in table format. The biological coefficients of variations between HepG2^{WT} clones with the same gene KO/KI were 19, 25, and 29% for GalNAc-T1, GalNAc-T2, and GalNAc-T3, respectively (not shown). These variations are within the boundaries of what is expected when two individual clonal cell lines are compared. In contrast, the biological coefficients of variations between the two individual datasets for pools of HepG2^{WT} cells were as expected much lower (2–3%).

Enriched terms among up-regulated genes									
GO ID	p-value	OddsRatio Exp	. Count	Count	Size	Term			
GO:0048285	8.54E-24	4.10	26.60	88	537	organelle fission			
GO:0000278	2.00E-22	6.25	11.28	54	246	mitotic cell cycle			
GO:0051301	2.79E-20	3.55	29.90	88	612	cell division			
GO:0006260	1.18E-18	6.29	9.14	44	186	DNA replication			
GO:0044770	8.47E-17	4.707	13.37	51	274	cell cycle phase transition			
GO:0000722	1.13E-16	37.00	1.28	17	26	telomere maintenance via recombination			
GO:0032201	5.77E-16	39.13	1.18	16	24	telomere maintenance via semi-conservative replication			
GO:0006271	1.17E-12	25.02	1.22	14	25	DNA strand elongation involved in DNA replication			
GO:0006297	3.23E-12	28.15	1.08	13	22	nucleotide-excision repair, DNA gap filling			
GO:0032200	1.58E-11	8.24	3.51	21	71	telomere organization			

Enriched terms among down-regulated genes GO ID p-value OddsRatio Exp. Count Count

	p					
GO:0002253	1.17E-10	12.22	1.82	15	44	activation of immune response
GO:0030449	1.32E-08	23.13	0.75	9	18	regulation of complement activation
GO:0072376	2.54E-08	5.89	3.74	18	89	protein activation cascade
GO:0006958	9.88E-07	7.10	2.14	12	51	complement activation, classical pathway
GO:0009611	1.79E-06	1.82	50.15	84	1191	response to wounding
GO:0002526	1.90E-06	5.45	3.08	14	74	acute inflammatory response
GO:0002684	3.46E-06	2.18	23.90	48	572	positive regulation of immune system process
GO:0019883	4.05E-06	22.94	0.505	6	12	antigen processing and presentation of endogenous
						antigen
GO:0034976	5.64E-06	4.05	4.80	17	115	response to endoplasmic reticulum stress
GO:0019885	1.43E-05	28.63	0.37	5	9	antigen processing and presentation of endogenous

Size Term

Enriched terms among up-regulated genes GOBPID p-value OddsRatio ExpCou G0:0015748 3.82E-04 6.93 0.95 OddsRatio ExpCount Count Size 6.93 0.95 6 72 Term organophosphate ester transpor triglyceride homeostasis plasma membrane organization ADP transport GO:0070328 4.55E-04 12.80 0.3 GO:0070328 GO:007009 GO:0015866 GO:0071825 GO:0061024 GO:0006629 4.55E-04 4.87E-04 5.06E-04 9.69E-04 1.22E-03 1.29E-03 4.75 152.38 10.24 2.23 1.97 1.82 0.04 nit organiz protein-lipid complex sub membrane organization lipid metabolic process GO:0055088 GO:1901264 1.90E-03 2.15E-03 4.98 1.29 99 lipid homeostasis e transport

Enriched terms among down-regulated genes

GOBPID	p-value	OddsRatio	ExpCount	Count	Size	Term
GO:0009968	4.77E-05	2.70	9.84	24	847	negative regulation of signal transduction
GO:0030334	1.33E-04	3.04	6.08	17	514	regulation of cell migration
GO:0080134	1.52E-04	2.44	11.28	25	953	regulation of response to stress
GO:0097190	2.29E-04	2.80	6.98	18	590	apoptotic signaling pathway
GO:0030449	2.69E-04	14.82	0.32	4	27	regulation of complement activation
GO:0023051	3.45E-04	2.11	17.08	32	1536	regulation of signaling
GO:1900407	3.58E-04	13.63	0.34	4	29	regulation of cellular response to oxidative stress
GO:0030855	6.01E-04	2.74	6.30	16	537	epithelial cell differentiation
GO:0042127	6.32E-04	2.05	16.07	30	1358	regulation of cell proliferation
GO:0072376	6 53E-04	6.20	1.05	6	89	protein activation cascade

Enriched terms among up-regulated genes

GOBPID	p-value	OddsRatio	ExpCount	Count	Size	Term
GO:0042697	6.85E-4	Inf	0.000685	1	1	menopause
GO:0003190	1.36E-3	1604.6	0.001370	1	2	atrioventricular valve formation
GO:2000820	1.36E-3	1604.6	0.001370	1	2	negative regulation of transcription from RNA polymerase II promoter involved in smooth muscle cell differentiation
GO:0009450	1.36E-3	1604.6	0.001370	1	2	gamma-aminobutyric acid catabolic process
GO:0036304	1.36E-3	1604.6	0.001370	1	2	umbilical cord morphogenesis
GO:0010035	1.88E-3	15.59	0.260306	3	380	response to inorganic substance
GO:0018242	2.05E-3	802.25	0.002055	1	3	protein O-linked glycosylation via serine
GO:0043420	2.05E-3	802.25	0.002055	1	3	anthranilate metabolic process
GO:0018243	2.73E-3	534.8	0.002740	1	4	protein O-linked glycosylation via threonine
GO:0003199	2.73E-3	534.8	0.002740	1	4	endocardial cushion to mesenchymal transition involved in heart valve formation

Enriched terms among down-regulated genes GOBPID p-value OddsRatio ExpCount Count Size

Down-regulated (52)

10

15

O:0050966	1.67E-4	145.52	0.02	2	7	detection of mechanical stimulus involved in sensory perception of pain
O:0046415	6.13E-4	66.12	0.04	2	13	urate metabolic process
O:0051593	6.13E-4	66.12	0.04	2	13	response to folic acid
GO:0031295	1.18E-3	15.89	0.21	3	73	T cell costimulation
GO:0007584	1.25E-3	9.38	0.47	4	165	response to nutrient
O:0009612	1.58E-3	8.77	0.50	4	176	response to mechanical stimulus
GO:0060284	2.54E-3	4.22	1.89	7	660	regulation of cell development
GO:0032904	2.86E-3	Inf	0.00	1	1	negative regulation of nerve growth factor production
O:0019343	2.86E-3	Inf	0.00	1	1	cysteine biosynthetic process via cystathionine
O:0033343	2.86E-3	Inf	0.00	1	1	positive regulation of collagen binding

Figure EV6.

-2

ò

5

Average logCPM

Katrine T Schjoldager et al