SUPPLEMENTARY FIGURES AND TABLE

Supplementary Figure 1: HBXIP downregulates the expression of SCO2 and PDHA1 in breast cancer cells. A. The levels of lactate, intracellular glucose and ROS were measured by HPLC, glucose-lactate biosense tester SBA-40E and flow cytometer analysis in MCF-7 and T47D cells transfected with si-p53 or si-p53/si-HBXIP. The interference efficiency of si-p53 and si-HBXIP was confirmed by Western blot analysis. B. The mRNA levels of HBXIP, SCO2 and PDHA1 were examined by RT-PCR analysis in MCF-7 and T47D cells transfected with differences are indicated: **P < 0.01, Student's *t*-test. Each experiment was repeated at least three times. Data are shown as mean \pm SEM (n = 3).

Supplementary Figure 2: MiR-183/96/182 cluster targets SCO2 and PDHA1 mRNA CDSs. A, B. The schematic diagram shows the heteroduplexes of the mRNA CDSs of SCO2 and PDHA1 and their mutants in the miRNA recognizing elements (MREs) of miR-183, miR-182 and miR-96. **C.** The relative expression levels of miR-183, miR-182 and miR-96 were detected by qRT-PCR analysis in 30 pairs of clinical breast cancer tissues and their surrounding non-tumorous tissues (P < 0.001, Wilcoxon signed-rank test). **D.** The HBXIP expression was examined by IHC analysis in 8 selected from 30 clinical breast cancer tissues samples. Each experiment was repeated at least three times. Data are shown as mean \pm SEM (n = 3).

Supplementary Figure 3: HBXIP activates miR-183/96/182 promoter through transcriptional factor HIF1a. A. The promoter activities of miR-183/96/182 cluster were analyzed by luciferase reporter gene assays in MCF-7 cells transfected with HBXIP. B. The effect of CoCl2 (500 μ M), a chemical inducer of HIF1a, on the promoter activity of P4 fragment of miR-183/96/182 was detected by luciferase reporter gene assays in MCF-7 cells. C. The protein levels of HIF1a and HBXIP were detected by Western blot analysis in MCF-7-HBXIP cells transfected with si-HBXIP. Statistically significant differences are indicated: **P < 0.01, Student's *t*-test. Each experiment was repeated at least three times. Data are shown as mean \pm SEM (n = 3).

Supplementary Figure 4: HBXIP enhances the glucose metabolism reprogramming of breast cancer cells through miR-183/96/182 in vitro. A. The levels of lactate in the culture media of T47D and 293T cells transfected with miR-183/96/182 were measured by HPLC and normalized to cell number. B. The levels of intracellular glucose were detected by glucose-lactate biosense tester SBA-40E and normalized based on the protein concentration in T47D and 293T cells transfected with miR-183/96/182. C. The levels of intracellular ROS were assessed by flow cytometry in T47D and 293T cells transfected with miR-183/96/182. Statistically significant differences are indicated: *P < 0.05, **P < 0.01, Student's *t*-test. Each experiment was repeated at least three times. Data are shown as mean \pm SEM (n = 3).

Supplementary Figure 5: HBXIP enhances the growth of breast cancer cells through miR-183/96/182 targeting SCO2 and PDHA1 *in vivo*. A. Photographs of MCF-7 cells and MCF-7-HBXIP cells-injected nude mice with tumors were shown. B. The average weight of tumors from above mice was shown. C. The relative expression levels of miR-183, miR-96 and miR-182 were detected by qRT-PCR analysis in the xenograft tumor tissues derived from MCF-7 and MCF-7-HBXIP cells. Statistically significant differences are indicated: *P < 0.05, **P < 0.01, Student's *t*-test. Each experiment was repeated at least three times. Data are shown as mean \pm SEM (n = 3).

Gene	Primer	Sequence (5'-3')		
Primers for miR-183/96/182 promoter				
P1	forward	CTTGTATCCCGGGCACCTTT		
	reverse	TGCTTGGAAATCCGACCCTG		
P2	forward	CTTGTATCCCGGGCACCTTT		
	reverse	TTCAATATGCCCGACTCCCG		
P3	forward	GGTTCTCGACAGCAGGTGAA		
	reverse	TGCTTGGAAATCCGACCCTG		
P4	forward	GGTTCTCGACAGCAGGTGAA		
	reverse	TTCAATATGCCCGACTCCCG		
P5	forward	CTTGTATCCCGGGCACCTTT		
	reverse	TTCACCTGCTGTCGAGAACC		
P6	forward	CGGGAGTCGGGCATATTGAA		
	reverse	TGCTTGGAAATCCGACCCTG		
P4-hif1α-mut	forward	GGCCCGTTGGGCTCTGTGACTCATTATCTCCGCTGTCCGGGTTCTCGCT		
	reverse	AGCGAGAACCCGGACAGCGGAGATAATGAGTCACAGAGCCCAACGGGCC		
miRNAs qRT-	PCR prim	ners		
miR-183	forward	TATGGCACTGGTAGAATTCACT		
miR-96	forward	TTTGGCACTAGCACATTTTTGCT		
miR-182	forward	TTTGGCAATGGTAGAACTCACACT		
	reverse	TAGCAGCGGGAACAGTTCTGCAG		

Supplementary Table 1: List of primers used in this paper

Gene	Primer	Sequence (5'-3')		
Primers for RT-PCR and qRT-PCR				
PDHA1	forward	AGACCATCTCATCACAGCCTAC		
	reverse	TCTCAACAGACGTTCCCATT		
SCO2	forward	TGGGTGCTGATGTACTTTGGC		
	reverse	ACAGTCTTGGGTGGAAGTCCTG'		
GAPDH	forward	CATCACCATCTTCCAGGAGCG		
	reverse	TGACCTTGCCCACAGCCTTG		
HBXIP	forward	ATGGAGCCAGGTGCAGGTC		
	reverse	TGGAGGGATTCTTCATTGTG		
Primers for C	DS cloning			
SCO2	forward	ATGCTGCTGACTCGGAGCC		
	reverse	TCAAGACAGGACACTGCGGAAA		
PDHA1	forward	ATGAGGAAGATGCTCGCCG		
	reverse	TTAACTGACTGACTTAAACTTG		
HIF1a	forward	CGGGGTACCATGGAGGGCGCCGGCGGC		
	reverse	CGCGGATCCTCAGTTAACTTGATCCAAAGCTCTG		
HIF1(P564A)	forward	ATTTAGACTTGGAGATGTTAGCTGCCTATATCCCAATGGATGATGACTT		
	reverse	AAGTCATCATCCATTGGGATATAGGCAGCTAACATCTCCAAGTCTAAAT		
Primers for C	hIP			
	forward	ATGGGTCTGAGGACCAGGTAGG		
	reverse	CCCAGGTGGATAACTGGACGA		
Primers for pLuc-SCO2-96p-182				
	forward	TCAGCTCAAGCCTCGGGTCC		
	reverse	TCCAGCCCCGAACAGGC		
Primers for pl	Luc-SCO2	-663p-183		
	forward	TGACATCTGCCCAGACGAGC		
	reverse	GACAGGACACTGCGGAAAGC		
Primers for pl	Luc-PDHA			
	forward	ACAGACCATCTCATCACAGCCTAC		
	reverse	TAGCAGCACCATCGCCATAT		
Si-HBXIP	GCAGCUAAGCUAACCUCUGdTdT			
Si-p53	GUGCAGCUGUGGGUUGAUUUU			