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SUMMARY

Genome-wide DNA methylation mapping uncovers
epigenetic changes associated with animal develop-
ment, environmental adaptation, and species evolu-
tion. To address the lack of high-throughput
methods for DNA methylation analysis in non-model
organisms, we developed an integrated approach for
studying DNA methylation differences independent
of a reference genome. Experimentally, our method
relies on an optimized 96-well protocol for reduced
representation bisulfite sequencing (RRBS), which
we have validated in nine species (human, mouse,
rat, cow, dog, chicken, carp, sea bass, and zebra-
fish). Bioinformatically, we developed the Ref-
FreeDMA software to deduce ad hoc genomes
directly from RRBS reads and to pinpoint differen-
tially methylated regions between samples or groups
of individuals (http://RefFreeDMA.computational-
epigenetics.org). The identified regions are inter-
preted using motif enrichment analysis and/or
cross-mapping to annotated genomes. We validated
our method by reference-free analysis of cell-type-
specific DNA methylation in the blood of human,
cow, and carp. In summary, we present a cost-effec-
tive method for epigenome analysis in ecology and
evolution, which enables epigenome-wide associa-
tion studies in natural populations and species
without a reference genome.
BACKGROUND

DNA methylation is an epigenetic mechanism that is indispens-

able for animal development (Reik, 2007) and also broadly

relevant for plant biology (Law and Jacobsen, 2010). Defects

in the DNA methylation machinery are associated with wide-

spread changes in cellular identity and interfere with the devel-

opmental potential of stem cells (Jones, 2012). Altered DNA
Cell Rep
methylation patterns are ubiquitous in cancer (Baylin and

Jones, 2011; Feinberg and Tycko, 2004), and they have been

observed in numerous other diseases (Portela and Esteller,

2010; Robertson, 2005). Moreover, there is mounting evidence

for associations between DNA methylation patterns and envi-

ronmental factors such as stress, nutrition, toxic exposures,

and substance abuse (Foley et al., 2009; Mill and Heijmans,

2013).

In humans, epigenome-wide association studies (EWASs)

have emerged as a widely used paradigm for linking DNA

methylation to environmental exposures and to diseases (Mi-

chels et al., 2013; Rakyan et al., 2011). A small number of asso-

ciations between the epigenome and the environment have also

been validated in inbred mouse and rat models, for example,

identifying connections between early life exposures and the

propensity to subsequently develop certain diseases and behav-

ioral phenotypes. A widely discussed hypothesis posits that

epigenetic mechanisms provide a mechanistic link between ex-

posures and diseases, thus contributing to the developmental

origins of health and disease in humans (Gillman, 2005; Water-

land and Michels, 2007). Furthermore, DNA methylation can be

transgenerationally inherited at certain genomic loci (Feil and

Fraga, 2011) and may contribute to species evolution (Jablonka

and Raz, 2009).

There is tremendous potential in studying environmental influ-

ences and epigenetic inheritance not only in laboratory animals,

but also in natural populations and non-model organisms. For

example, animals in the wild are often exposed to complex

evolutionary pressures and ecological interactions that cannot

be modeled in the laboratory. Initial studies along these lines

have suggested a role of epigenetics in the evolution of Darwin’s

finches (Skinner et al., 2014) and in speciation amongmarsupials

(O’Neill et al., 1998), and they identified DNAmethylation as a po-

tential source of random variation in natural populations of fish

(Massicotte et al., 2011) and songbirds (Liebl et al., 2013; Schrey

et al., 2012).

However, systematic epigenetic studies in natural populations

and non-model organisms have been hampered by the lack of

methods for high-resolution and high-throughput DNA methyl-

ation analysis that work well across a broad range of species.

To date, most studies of DNA methylation in ecology and
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Figure 1. DNA Methylation Analysis without a Reference Genome

Workflow for reference-genome-independent analysis of differential DNA

methylation using an optimized RRBS protocol and the RefFreeDMA software.

Colored bars represent RRBS sequencing reads, and identical colors indicate

high sequence similarity. Bisulfite-converted MspI restriction sites are shown

at the beginning of each read (CGG for methylated sites and TGG for un-

methylated sites). To derive a deduced genome, reads from all samples are

clustered by sequence similarity, and a consensus sequence is determined.

These deduced genome fragments (black-edged bars) are concatenated into

one deduced genome, to which the RRBS reads for each sample are mapped.

DNA methylation levels are obtained by counting the number of Cs versus Ts

for individual cytosines in the deduced genome (this step typically focuses on

CpG sites, but themethod also supports the analysis of non-CpGmethylation).

Differential methylation analysis is performed by comparing site-specific and

fragment-specific DNAmethylation levels between sample groups. Finally, the

identified differentially methylated fragments are analyzed by cross-mapping

to well-annotated genomes of other species (e.g., mouse or human) and by

motif enrichment analysis (e.g., for identifying enriched transcription factor

binding sites).
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evolution have relied on low-throughput, gel-based assays such

as MS-AFLP (Schrey et al., 2013). Much more powerful assays

are being used for DNA methylation analysis in human, including

the Infinium microarray, whole-genome bisulfite sequencing

(WGBS), and reduced representation bisulfite sequencing

(RRBS). However, none of these assays is directly applicable

for studying DNA methylation in natural populations and non-

model organisms: The Infinium assay requires a commercial mi-

croarray that is only available for the human genome (Bibikova

et al., 2011); WGBS is excessively expensive when studying

more than a handful of samples (Beck, 2010), and RRBS suffers

from the technical complexity of the original protocol (Gu et al.,

2011) and from concerns that the restriction enzyme MspI may

not provide good genome coverage in other species. Further-

more, there is a general lack of bioinformatic methods for

analyzing sequencing-based DNA methylation data in the

absence of a high-quality reference genome and in genetically

diverse populations for which existing reference genomes would

unduly bias the analysis.

Here, we describe an integrated approach for analyzing DNA

methylation at single-base-pair resolution in a broad range of

species. We combine an optimized high-throughput RRBS pro-

tocol with a tailored computational method called RefFreeDMA

in order to detect differential DNA methylation without a refer-

ence genome. RefFreeDMA constructs a deduced genome

directly from RRBS sequencing reads, it maps the sequencing

reads to the deduced genome, performs DNA methylation call-

ing, and identifies differentially methylated cytosines and DNA

fragments (Figure 1).We validated ourmethod by studying blood

cell-type-specific DNA methylation in three species (human,

cow, and carp), benchmarking the reference-free analysis

against a reference-based analysis using the existing reference

genomes. The experimental protocol was also validated in six

additional vertebrate species (rat, mouse, dog, chicken, sea

bass, and zebrafish). We expect that the described method will

be broadly useful for DNA methylation analysis in non-model or-

ganisms, for example, to identify and interpret DNA methylation

differences between samples (e.g., different cell types) or groups

of individuals (e.g., animals that have been exposed to different

environments).
thors
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Figure 2. An Optimized RRBS Protocol Validated in Nine Species
(A) Schematic outline of RRBS library preparation and the corresponding

sequencing reads.

(B) Computationally predicted (blue) and experimentally measured (red) frag-

ment length distribution of RRBS libraries in nine vertebrate species. Pre-

dictions were based on in silico MspI restriction digests of the reference

genomes using the BSgenome R package. Experimental results were ob-

tained by electrophoresis (Experion DNA 1k chip). In species with a reference

genome, concordance between predicted and experimentally measured

peaks can be used to confirm successful RRBS library preparation.
RESULTS

High-Throughput DNA Methylation Mapping in Diverse
Animal Species Using RRBS
RRBS enables genome-scale DNA methylation mapping at sin-

gle-base-pair resolution for a fraction of the cost of WGBS

(Meissner et al., 2005). It exploits the highly characteristic distri-
Cell Rep
bution of DNA methylation in vertebrate genomes, which occurs

mainly at CpG dinucleotides. DNA is digested with the restriction

enzymes MspI (restriction site: C^CGG) and/or TaqI (restriction

site: T^CGA), which are insensitive to DNA methylation at the

central CpG, and short size-selected restriction fragments are

subjected to bisulfite sequencing (Figure 2A).

We adapted an existing RRBS protocol (Boyle et al., 2012) and

optimized it for genome coverage and sample throughput (see

Experimental Procedures for details). The optimized protocol in-

creases the number of covered CpG sites from �2.5M to �4M

(human genome, using the MspI enzyme), and it allows a single

person to process up to 192 samples per week. For most verte-

brates, good sequencing coverage can be obtained when 6–12

barcoded samples are sequenced on a single lane of Illumina Hi-

Seq, which makes the protocol approximately 10-fold cheaper

than WGBS. To validate the assay, we generated RRBS libraries

for nine species (human, rat, mouse, cow, dog, chicken, carp,

sea bass, and zebrafish). These libraries showed characteristic

fragment length distributions, which reflect the distribution of

CpG-rich repetitive elements in these species and which provide

a convenient metric for assessing the quality of RRBS libraries

prior to sequencing (Figure 2B).

Using our optimized RRBS protocol, we established a DNA

methylation dataset for the major nucleated cell populations in

peripheral blood of three species (human, cow, and carp), with

four biological replicates per cell type and species. The human

and cow datasets comprise granulocytes, monocytes, and lym-

phocytes, whereas the carp dataset also includes nucleated

erythrocytes and one additional leukocyte population that

morphologically resembles granulocytes and monocytes (Fig-

ure 3A). In total, the dataset comprises 44 blood cell samples

from three species and 789 million sequencing reads (Table

S1). All cell types were fluorescence-activated cell sorting

(FACS) purified based on forward and side scatter alone,

demonstrating the feasibility of separating blood cell types in

species that lack suitable FACS antibodies. The purity of the

sorted cell populations was assessed visually through cytospins,

and it exceeded 95% in all samples. Here, our analysis focuses

on DNAmethylation differences between these cell populations,

but the same sorting strategy can also be used for minimizing the

impact of differences in cell composition between individuals,

which is a major confounder in human EWAS (Houseman

et al., 2012; Jaffe and Irizarry, 2014).

RefFreeDMA: Analyzing Differential DNA Methylation
without a Reference Genome
We devised a workflow for reference-free DNAmethylation anal-

ysis consisting of six main steps (Figure 1): (1) preparation and

sequencing of RRBS libraries, (2) inference of a deduced

genome from the RRBS sequencing reads, (3) read alignment

to the deduced genome, (4) DNA methylation calling, (5) identifi-

cation and ranking of differentially methylated CpGs and

deduced genome fragments, and (6) functional annotation of dif-

ferential DNA methylation. RefFreeDMA is implemented as a

Linux-based software pipeline, supporting small to moderately

sized analyses on a desktop computer (e.g., 40-hr total

runtime for 20 samples), whereas large analyses are efficiently

parallelized on a computing cluster. A detailed overview of the
orts 13, 2621–2633, December 22, 2015 ª2015 The Authors 2623
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Figure 3. Validation of Reference-Free DNA Methylation Mapping

(A) Representative images (Giemsa-stained cytospins at 1003 magnification) of blood cell populations that were purified by FACS using an antibody-inde-

pendent protocol based on forward scatter (x axis) and side scatter (y axis). Gated cell populations are highlighted in different colors, and their DNA was used for

RRBS library preparation.

(B) Percent mapping efficiency (alignment rate) for RRBS reads using the deduced genome versus the reference genome. Mapping rates are expectedly lower

than 100% for the reference-free method because low-confidence reads are used during alignment but not for building the deduced genome.

(C) Percentage of CpGs and sequencing readswith concordantmapping between the two approaches in non-repetitive genomic regions (see Figure S3A for details).

(D) Pearson correlation of DNA methylation levels for the two approaches, compared at the level of CpG sites and deduced genome fragments using

RefFreeDMA’s standard filtering criteria (coverage of least eight and not more than 200 mapped reads).

(E) DNA methylation scatterplots at the level of CpG sites (r, Pearson correlation; N, number of CpGs; cov, minimum and maximum read coverage used for

filtering).
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RefFreeDMA pipeline is provided as a Unified Modeling Lan-

guage (UML) diagram in Figure S1.

A key aspect of RefFreeDMA is the construction of a deduced

genome directly from the RRBS reads. This deduced genome is

not based on classical de novo assembly of bisulfite sequencing

reads, which is computationally expensive and would require

very deep sequencing. Rather, we exploit a specific character-

istic of RRBS with its defined fragment start and end positions

at MspI restriction sites to simplify the problem. RefFreeDMA

constructs the deduced genome by clustering the RRBS reads

from all samples in a given species according to their sequence

similarity, followed by inference of the consensus sequence for

each read cluster. In the consensus sequence, positions with

both cytosines (Cs) and thymines (Ts) among the clustered reads

are retained as Cs (Figure 1), given that they are likely to reflect

genomic cytosines that aremethylated and protected frombisul-

fite sequencing in some but not all samples. We developed an

efficient two-step approach in which all quality-filtered, non-

duplicate sequencing reads are initially clustered in an approxi-

mate and computationally efficient manner, followed by a more

precise and computationally demanding finalization step (see

Experimental Procedures for details). Finally, all consensus

sequences are concatenated with spacer sequences (i.e.,

stretches of Ns) to facilitate computational processing, resulting

in adeducedgenome that is specific for a given species and anal-

ysis but shared among all samples contributing to the analysis.

The subsequent steps of read alignment, DNA methylation

calling, and differential methylation analysis are performed in

much the sameway as for DNAmethylation analysis with a refer-

ence genome (Bock, 2012). Specifically, we use BSMAP/

RRBSMAP (Xi et al., 2012; Xi and Li, 2009) for read alignment

and a custom DNA methylation calling script (Bock et al., 2010)

for calculating the fraction of methylated reads at each CpG po-

sition in the deduced genome. Differentially methylated CpGs

and deduced genome fragments between sample groups are

then identified using a modified t test statistic as described for

the RnBeads software (Assenov et al., 2014). The analysis gives

rise to lists with individual CpGs as well as deduced genome

fragments ranked by their degree of differential methylation.

In a final step, the top-ranking differentially methylated frag-

ments are exported as FASTA/FASTQ files, which provide the

basis for biological interpretation by cross-mapping to well-

annotated genomes and by reference-free motif enrichment

analysis. The principle behind cross-mapping is to link deduced

genome fragments in the analyzed species to orthologous re-

gions in well-annotated genomes of other vertebrate species

and to use the genome annotations that are available in the latter

species (e.g., genes, transcription factor binding sites, histone

modifications, and DNase hypersensitivity sites) for cross-spe-

cies enrichment analysis. This approach is of course limited to

genomic regions that are conserved across species; hence, it

is most powerful for species that are closely related to well-char-

acterized model organisms.

Motif enrichment analysis provides an alternative approach to

biological interpretation that is independent of any reference ge-

nomes. It is based on the observations that transcription factor

binding motifs are highly conserved across all vertebrates (Nitta

et al., 2015) and that DNA methylation levels at motif sequences
Cell Rep
have been shown to correlate with cell-type-specific transcrip-

tion factor binding (Bock et al., 2012; Feldmann et al., 2013;

Stadler et al., 2011). By analyzingmotif enrichment among differ-

entially methylated DNA fragments using existing databases

(such as JASPAR; Mathelier et al., 2014) and software tools

(such as AME; McLeay and Bailey, 2010), it is possible to gain

insight into the regulatory mechanisms that distinguish the

studied cell types and sample groups.

Validating Reference-Free DNA Methylation Analysis
across Three Species and 44 Samples
To validate our approach, we performed reference-free analysis

of the RRBS blood cell dataset (Figure 3A) and compared the re-

sults to those obtained by reference-based analysis of the same

data (see Experimental Procedures for details). The fraction of

aligned reads was in the range of 90% to 98% for the deduced

genomes and slightly lower (75% to 95%) for the published refer-

ence genome of each species (Figure 3B; Table S1). The number

of covered CpGs was predominantly species specific (3–4

million for human, �3 million for cow, and 1.5–2 million for

carp) and broadly similar between the reference-based and

reference-free analysis. Average DNA methylation levels at

CpG sites were also similar for both approaches, whereas the

observed C-to-T conversion rates at non-CpG sites were sub-

stantially lower in the reference-free analysis (Table S1). This is

because ubiquitously unmethylated Cs—which in vertebrates

are mostly found in non-CpG context—are counted as Ts by

the reference-free analysis (case 4 in Figure S2) and therefore

do not contribute to high non-CpG conversion rates. To circum-

vent this potential problem our RRBS protocol uses methylated

and unmethylated spike-in controls to monitor bisulfite conver-

sion rates (Table S1), rather than relying on non-CpG conversion

rates. The issue can also be avoided altogether by sequencing a

single RRBS sample without bisulfite conversion and including it

in the analysis. Finally, to assess the comparative performance

of our reference-free method, we benchmarked it against simply

cross-mapping the RRBS reads for carp to the well-annotated

genomes of human, mouse, and zebrafish. The results showed

a one to two orders of magnitude higher genome-wide CpG

coverage using RefFreeDMA than observed for the basic

cross-mapping approach (Table S2).

We also compared the alignment of individual reads, the

coverage of individual CpGs, and the DNA methylation levels

of single CpGs and deduced genome fragments between the

two approaches. To that end, the deduced genome fragments

were aligned to the corresponding reference genome, allowing

us to link most RRBS fragments (human: 1,254,324 out of

1,522,786; cow: 1,276,537 out of 1,521,946; and carp: 455,821

out of 780,757) to their putative position in the reference genome.

More than 75% of reads and CpGs in non-repetitive regions

where concordantly mapped by both approaches (Figure 3C),

whereas the agreement was much lower for repetitive regions

and reads that map to multiple positions in the genome (Fig-

ure S3A). We investigated these discrepancies and identified

four scenarios in which there may be deviations between the

reference-free method and the reference-based method (Fig-

ure S2). Most frequently, a sequencing read maps to multiple

positions throughout the reference genome, and the aligner
orts 13, 2621–2633, December 22, 2015 ª2015 The Authors 2625



randomly assigns it to one of these positions. We indeed

observed similarly low concordance rates in repetitive regions

when running the reference-based method twice with different

random seed parameters (Figure S3A). Based on these results,

it might even be argued that the clustering and combining of

highly similar repetitive reads into a single consensus provide a

more appropriate way of handling multimapping reads than their

random assignment in the reference-based analysis, and similar

approaches have successfully been used for studying epigenetic

marks in repetitive regions of the genome (Bock et al., 2010;

Day et al., 2010). Finally, despite these special cases, we

observed excellent agreement between the two approaches

when plotting alignment positions across a representative chro-

mosome (Figure S3B), and the DNAmethylation values obtained

with the two approaches were highly correlated in all samples

and all species—with Pearson correlation coefficients above

0.9 across all CpGs and fragments and above 0.95 for those

CpGs and fragments that have good sequencing coverage (Fig-

ures 3D, 3E, and S3C).

Reference-Free Analysis of Differential DNA
Methylation between Cell Types of the Blood
Importantly, the reference-free method was able to recapitulate

the known biological similarities and differences among the

different blood cell types in almost perfect concordance with

the reference-based method (Figure 4A). Many genes with a

known role in hematopoietic cells were identified by both

methods, as illustrated by the myeloid-specific MPO gene and

the lymphoid-specific LAX1 gene (Figure 4B). There was also

strong correlation (r R 0.95) between the differential DNA

methylation ranks obtainedwith the twomethods in all three spe-

cies (Figure S4A). Furthermore, the vast majority of the top-1,000

differentially methylated fragments identified by the reference-

free method were also among the top-1,000 or top-5,000 differ-

entially methylated regions based on the reference-based

method (Figure S4B). The magnitude of the DNAmethylation dif-

ferences calculated by either method were also highly correlated

(Figure S4C). Furthermore, both methods identified a consistent

and biologically interesting trend toward increased DNA methyl-

ation levels in lymphoid as opposed to myeloid cells, which was

very prominent in human, weaker in cow, and essentially absent

in carp (Figures 4C and S4D), suggesting species-specific differ-

ences in the genome-wide regulation of DNA methylation in the

hematopoietic system.

We pursued two complementary approaches for interpreting

the identified DNA methylation differences without a reference

genome for the target species. First, we cross-mapped the

deduced genome fragments obtained in each species to the

human and mouse genome, for which extensive functional

genomics data exist from projects such as ENCODE (ENCODE

Project Consortium, 2004), IHEC (http://www.ihec-

epigenomes.org/), and BLUEPRINT (Adams et al., 2012).

Cross-species mapping rates were expectedly low, amounting

to �20% for human and cow and �10% for carp at a maximum

mismatch rate of 20%. (Figure S5A). Nevertheless, for those

deduced reference fragments that did map, we were able to

perform enrichment analysis relative to the extensive biological

annotations of the human and mouse genomes. Fragments
2626 Cell Reports 13, 2621–2633, December 22, 2015 ª2015 The Au
that were less methylated in lymphocytes as compared with

granulocytes (hypermethylated in granulocytes) were often

associated with lymphoid-specific regulatory elements and tran-

scription factor binding mapped by ChIP-seq and similar tech-

nologies (Figures 5A and S5B). The enrichment was not always

consistent between species, but we found recurrent and biolog-

ically meaningful associations. Most notably, the binding sites of

two keymyeloid transcription factors, CEBPA andCEBPB (Akagi

et al., 2010; Rosenbauer and Tenen, 2007), were hypermethy-

lated in both human and cow lymphocytes, and binding sites

of MYB, a transcription factor implicated in lymphocyte and

erythrocyte development (Greig et al., 2008), were hypermethy-

lated in human and cow granulocytes. In contrast, carp appears

to be too evolutionary distant to obtain interesting results by

cross-mapping to mammalian genomes (Figure S5B).

Second, we exploited the fact that transcription factor bind-

ing motifs are much more conserved than most regulatory ele-

ments (Nitta et al., 2015) and performed alignment-free motif

enrichment analysis for those deduced reference fragments

that were most differentially methylated between lymphocytes

and granulocytes. In all three species, there was a higher ratio

of GC-rich and CpG-rich motifs among fragments that are hy-

permethylated in granulocytes (Figures 5B and S5C), which we

corrected for in the motif analysis by using random sequences

with matched base composition as controls (see Experimental

Procedures for details). Those fragments that were less meth-

ylated in lymphocytes (hypermethylated in granulocytes) were

enriched for 29 sequence motifs, of which four were shared

across two species (EGR2, KLF5, KLF1, and RREB1; shown

in Figure S5D). Those fragments that were less methylated in

granulocytes (hypermethylated in lymphocytes) were enriched

for 40 sequence motifs, and four motifs were shared between

all three species (CEBPA, CEBPB, HLF, and JUN) (Figures 5C

and S5D). Three of these transcription factors are well-estab-

lished regulators of myeloid cell differentiation (Akagi et al.,

2010; Orkin, 1995; Rosenbauer and Tenen, 2007), whereas

HLF is associated with hematopoietic stem cells (Gazit et al.,

2013). Finally, we also searched for motifs that were enriched

in lymphocyte-specific as well as in granulocyte-specific differ-

entially methylated fragments (Figures 5C and S5E), and a total

of 27 sequence motifs were identified, of which six were shared

across all three species (BRCA1, FOXL1, PAX4, RREB1,

RUNX1, and RUNX2). Of these, RUNX1 and RUNX2 in partic-

ular are known to play a role in both lymphoid and myeloid

cell differentiation and function (Klunker et al., 2009; Lieber-

mann and Hoffman, 2002; Tenen et al., 1997).

DISCUSSION

We present an integrated experimental and computational

method for DNA methylation analysis and interpretation in non-

model organisms, unsequenced species, and natural popula-

tions. Our method addresses a major bottleneck for epigenome

studies in the context of comparative genomics, ecology, and

evolution, where whole genome bisulfite sequencing is rarely

affordable for sufficiently large cohorts and other widely used

methods such asMS-AFLP are strongly limited in the information

they can provide.
thors
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Figure 4. Differential DNA Methylation Analysis without a Reference Genome

(A) Global concordance between reference-free and reference-based DNA methylation analysis illustrated by principal component analysis. Shown are the first

two principal components (x axis and y axis) for the reference-free (circles) and reference-based (triangles) approaches as well as the percentage of variance

explained by these principal components. The inset for carp shows the third and fourth principal components, which provides clearer separation of lymphoid

versus myeloid cell types.

(B) Representative genome browser tracks displaying DNA methylation levels at single CpG sites as determined by the reference-free and reference-based

approach, focusing on genes with known myeloid (MPO) and lymphoid (LAX1) function. The ‘‘Deduced fragments’’ track depicts the mapping between deduced

genome fragments (gray boxes) and the reference genome.

(C) DNAmethylation scatterplots showing differential DNAmethylation in granulocytes (x axis) versus lymphocytes (y axis) based on the reference-free approach.

Means across four biological replicates per cell type are shown, and the green hexagons indicate the top-500most differentially methylated fragments (r, Pearson

correlation; N, number of deduced genome fragments). Matched scatterplots for the reference-based analysis are shown in Figure S4D.
On the experimental side, our method uses an optimized 96-

well RRBS protocol, which provides an excellent trade-off be-

tween single-base-pair resolution, affordable cost, and practical
Cell Rep
feasibility for studies with hundreds (or even thousands) of indi-

viduals. Building upon the track record of RRBS in mouse and

human and the popularity of reduced representation genome
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Figure 5. Biological Interpretation of DNA Methylation Differences

(A) Region enrichment analysis for differentially methylated deduced genome fragments that have been cross-mapped to the human genome (hg19). The top-20

enriched region sets obtained by LOLA analysis are shown. Uncorrected p values are plotted on the y axis, and the number of overlapping regions is indicated by

bubble size. Each dot represents a region set in the database, and the red dashed line indicates p values of 0.05. Similar plots for carp and for cross-mapping to

the mouse genome (mm10) are shown in Figure S5B. Cell-type-specific gene functions are based on literature search and indicated through colored boxes on

the x axis.

(B) Nucleotide frequency differences between the top-500 deduced genome fragments with increased DNAmethylation in granulocytes versus lymphocytes (red)

and vice versa (blue).

(legend continued on next page)
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sequencing assays such as RAD-seq (Baird et al., 2008) and

GBS (Elshire et al., 2011) for research in natural populations

and non-model organisms, we expect our method to be broadly

useful for EWASs in the context of ecology and evolution.

The described method should be applicable to any animal

and plant species with appreciable levels of DNA methylation,

and it is readily adapted to different genome compositions and

sequencingdepthsbyselectinganappropriate restrictionenzyme

(or enzyme combinations). Here we focused on vertebrates,

where DNAmethylation is largely restricted to CpG dinucleotides

and the MspI restriction enzyme is an ideal choice. MspI enriches

for CpG islands and gene promoters, while also providing a broad

sampling of other genomic regions such as enhancers, gene

bodies, CpG island shores, and repetitive elements. Furthermore,

every read contains at least one CpG (at the MspI restriction site),

which increases cost-effectiveness for vertebrate genomes.

Importantly, ourmethodcanbeused tomapnot onlyCpGmethyl-

ation, as we demonstrate here, but also non-CpG methylation

(Ziller et al., 2011), which is widespread among non-vertebrate

species and also present in certain vertebrate cell types.

On the computational side, we developed the RefFreeDMA

method and software to build a deduced genome directly from

the bisulfite sequencing reads, to quantify DNA methylation at

the level of single CpG sites and deduced fragments, and to

detect and rank DNA methylation differences between samples

and sample groups. RefFreeDMA overcomes relevant limitations

of an existing method that uses de novo assembly of MeDIP-seq

reads (Kaspi et al., 2014), namely low resolution, susceptibility to

biases, and lack of quantification, and it is more powerful and

more widely applicable than read mapping to the genome of a

related species (Weyrich et al., 2014), which requires a closely

matched genome and a second, unconverted library. Further-

more, we present two approaches (cross-mapping and motif

enrichment analysis) for interpreting the identified differentially

methylated regions in the absence of a reference genome.

To validate our method, we established and analyzed a cross-

species DNA methylation dataset comprising multiple blood cell

types in two mammalian species (human and cow) and one fish

(carp). All cell types were enriched to >95% purity by a sorting

strategy that is particularly useful for working with non-model

organisms because it does not require any species-specific

antibodies. Bioinformatic analysis in the three species with and

without the respective reference genomes gave rise to consis-

tent and informative results. For example, we observed that

the most differentially methylated fragments in the two mamma-

lian species were predominantly hypermethylated in lympho-

cytes, whereas no such bias was present in carp (Figures 4C

and S4D). We also identified characteristic binding motifs of

lineage-specific transcription factors that were consistently en-

riched among differentially methylated fragments of all three

species (Figure 5C).

Despite the good results that we obtained in our validation of

RefFreeDMA, there are several inherent limitations of refer-
(C) Enrichment of known sequence motifs associated with transcription factor bin

methylation in granulocytes versus lymphocytes (right) and vice versa (left). Them

sequenceswith the samemono- and dinucleotide composition (‘‘shuffled’’) as bac

the complete sets of enriched transcription factor binding motifs are shown in Fi
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ence-free DNA methylation analysis that potential users of our

method should keep in mind. First, repetitive elements with

high sequence similarity can get merged into a single deduced

genome fragment, which is why RefFreeDMA tends to report

moderately fewer covered CpGs than we obtained using refer-

ence-based analysis. Second, cytosines that are unmethylated

in all samples of one species will not be represented in the

deduced genome (case 4 in Figure S2), unless one RRBS sample

is sequenced without bisulfite conversion and added to the anal-

ysis. Third, our method does not perform de novo assembly of

deduced genome fragments, which would require substantially

deeper and broader sequencing coverage than is typically

affordable. It can therefore happen that the same CpG is

included twice in two partially overlapping fragments (case 2 in

Figure S2). However, based on our analysis of the validation da-

taset, this type of bias appears to be negligible (Figure S4C).

In summary, we expect that RefFreeDMA in combination with

our optimized RRBS protocol will be useful for researchers who

are interested in analyzing DNAmethylation in non-model organ-

isms without the need of a reference genome. Apart from as-

sessing cell-type-specific DNA methylation as demonstrated

here, other applications of RefFreeDMA may include EWASs

for phenotypic differences in natural populations, agricultural

research on the epigenetic effect of different feeds, drugs, and

rearing conditions, andmeta-epigenome studies of DNAmethyl-

ation in entire ecosystems.

EXPERIMENTAL PROCEDURES

Sample Acquisition

For human, cow, and carp, 5–10 ml of peripheral blood was obtained from two

male and two female individuals, anti-coagulated by 2mg/ml K2EDTA and pro-

cessed within 1 hr after collection. Human blood samples were obtained by

venipuncture from healthy donors by a qualified physician. All donors provided

informed consent. The study was conducted in accordance with the principles

laid down in the Declaration of Helsinki, overseen by the ethics commission of

the Medical University of Vienna. Cow blood samples were obtained post-

mortem from a slaughterhouse. Carp blood samples were obtained post-

mortem from a fish vendor. For the other species (mouse, rat, dog, chicken,

sea bass, and zebrafish), purified DNAwas provided by the collaborators listed

in the Acknowledgments.

Cell Purification

Leukocytes were isolated from whole blood by removing the erythrocytes

through hypotonic lysis. Specifically, 5 ml of whole blood was incubated

with 9 ml ddH2O for 1 min. The lysis was stopped by adding 1 ml of 103

PBS to the sample. Leukocytes were pelleted by centrifuging for 5 min at

550 g. If the pellet was still red, a second round of lysis was initiated by resus-

pending the pellet in 1 ml 13 PBS. Subsequently, 4.5 ml of ddH2O was added

and after 30 s the lysis reaction was stopped by adding 0.5 ml 103 PBS.

Leukocytes were pelleted by centrifuging for 3 min at 550 g. Finally, the pellet

was washed in 1 ml 13 PBS and then resuspended in 500–800 ml RPMI-1640

medium supplemented with 10% fetal calf serum (FCS). The cell suspension

was then filtered into a FACS tube, and cell populations were sorted by

FACS based on their forward and side scatter properties. Sorting was per-

formed on a BD FACS Aria 1 with a 70-mm nozzle, which allowed for a

maximum sorting speed of 30,000 events per second. For each population,
ding sites among the top-500 deduced genome fragments with increased DNA

otif analysis used either the opposing group (‘‘differential’’) or randomly shuffled

kground. The diagram only showsmotifs that were enriched in all three species;

gures S5D and S5E.

orts 13, 2621–2633, December 22, 2015 ª2015 The Authors 2629



between 500,000 and 3 million cells were obtained. Giemsa stained cytospins

were produced for each sorted cell population, and the purity was assessed at

1003 magnification.

DNA Isolation

The Allprep DNA/RNA Mini kit (QIAGEN) was used for DNA isolation. Cells

were lysed in 600 ml Buffer RLT Plus supplemented with 1% b-Mercaptoetha-

nol and vortexed thoroughly for at least 5 min. The procedure of isolating DNA

and RNA was performed according to protocol. DNA was stored at �20�C.

RRBS Library Preparation

For RRBS, 100 ng of genomic DNAwas digested for 12 hr at 37�Cwith 20 units

of MspI (New England Biolabs, R0106L) in 30 ml of 13 NEB buffer 2. To retain

even the smallest fragments and to minimize the loss of material, end prepa-

ration and adaptor ligation were performed in a single-tube setup. End fill-in

and A-tailing were performed by addition of Klenow Fragment 30 > 50 exo-
(New England Biolabs, M0212L) and dNTP mix (10 mM dATP, 1 mM dCTP,

1mM dGTP). After ligation to methylated Illumina TruSeq LT v2 adaptors using

Quick Ligase (New England Biolabs, M2200L), the libraries were size selected

by performing a 0.753 cleanup with AMPure XP beads (Beckman Coulter,

A63881). The libraries were pooled in combinations of six based on qPCR

data and subjected to bisulfite conversion using the EZ DNA Methylation

Direct Kit (Zymo Research, D5020) with the following changes to the manufac-

turer’s protocol: conversion reagent was used at 0.93 concentration, incuba-

tion performed for 20 cycles of 1 min at 95�C, 10 min at 60�C, and the desul-

phonation time was extended to 30 min. These changes increase the number

of CpG dinucleotides covered by reducing double-strand break formation in

larger library fragments. Bisulfite-converted libraries were enriched using Pfu-

Turbo Cx Hotstart DNA Polymerase (Agilent, 600412). Theminimum number of

enrichment cycles was estimated by qPCR. After a 23 AMPure XP cleanup,

quality control was performed using the Qubit dsDNA HS (Life Technologies,

Q32854) and Experion DNA 1k assays (BioRad, 700-7107). RRBS libraries

were sequenced on the Illumina HiSeq 2000 platform in 50-bp single-read

mode.

Bisulfite Conversion Controls

In order to monitor the efficiency of the bisulfite conversion and to check for

underconversion of unmethylated cytosines as well as overconversion of

methylated cytosines, custom-designed and synthesized methylated and un-

methylated oligonucleotides were spiked into each sample at a concentration

of 0.1%of the genomic DNA. For each sample, sequencing readswere aligned

to the control sequences using Bismark with default settings (Krueger and

Andrews, 2011). Conversion metrics are reported in Table S1.

RRBS Data Preprocessing

Sequencing data were processed with illumina2bam-tools v.1.12, and the

resulting BAM files were converted to fastq format using SamToFastq.jar

(picard-tools v.1.100) with the INCLUDE_NON_PF_READS parameter set to

FALSE. All reads were trimmed for adaptor sequences and low-quality

sequences using trimgalore v.0.3.3 (http://www.bioinformatics.babraham.ac.

uk/projects/trim_galore/) with the following command: trim_galore -q 20–

phred33 -a ‘‘AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC’’–stringency

1 -e 0.1–length 16–output_dir $output_dir $input_fastq.

Derivation of a Deduced Genome

Based on the trimmed RRBS reads for a given species and analysis, a

deduced genome is constructed in six steps: (1) Pre-filtering. To reduce the

number of reads that need to be processed, one representative read is kept

for each read sequence and sample. Furthermore, reads that stand a high

chance of arising from sequencing errors are discarded by requiring that

each read occurs at least twice among four samples after converting all Cs

to Ts. (2) Preliminary read grouping. To be computationally effective, we

perform read grouping initially by exact string matching. Reads that share

the same sequence in their fully converted form (all Cs replaced by Ts) are

combined into one pre-consensus sequence by assigning a C to each position

at which at least 5% of the reads contain a C in their unconverted form.

(3) Consensus building. To combine highly similar but not identical fragments
2630 Cell Reports 13, 2621–2633, December 22, 2015 ª2015 The Au
into one consensus, the pre-consensus fragments are grouped by sequence

similarity using an all-against-all alignment of the C to T converted fragments

with Bowtie2 v.2.2.3 (Langmead and Salzberg, 2012) using the following

command: bowtie2 -t -q–phred33–end-to-end -N 1 -L 22–norc–n-ceil

‘‘L,0,0.2’’–mp 3–np 0–score-min ‘‘L,-0.6,-0.6’’ -k 300 -D 3–rdg ‘‘20,20’’–rfg

‘‘20,20’’ -p 4 -x $reference -U $fastq -S $out_sam. Fragments that match

with less than 8% maximum mismatch ratio are merged by assigning them

to the largest available group. For each group, a consensus sequence is

deduced by assigning the majority base to each position, while assigning Cs

to all positions at which at least 5%of the fragments contain a C. (4)Consensus

refinement. For those groups in which some fragments exhibit more than 5%

mismatches relative to the consensus, the diverging reads are assigned to

separate groups, and a new consensus is built for the respective groups.

This procedure is repeated until no fragment-to-consensus mismatch rate ex-

ceeds 5%. (5) Merging of reverse complements. After bisulfite conversion,

reads originating from the two strands of the same DNA fragment are often

not identified as reverse complements during the Bowtie2 alignment and are

therefore not automatically merged into one consensus. To overcome this

problem, all reads that start and end with the RRBS restriction site (MspI: 50

[CT]GG – [CT][CT]G 30) are tested for whether they become perfect reverse

complements of each other when all Cs are replaced by Ts and all Gs are re-

placed by As. For each pair to be merged, a consensus is formed by assigning

a C to all T positions in the sequence of the forward partner at which the

reverse-complement partner shows a C. (6) Concatenation into one deduced

genome. In the final step, the merged deduced genome fragments are

concatenated into one deduced genome that can be used for alignment,

DNA methylation calling, and differential methylation analysis in the same

way as a regular reference genome. To avoid creating artificial sequences at

the concatenation sites, spacer sequences consisting of 50 Ns (equaling the

read length) are added between the deduced genome fragments. Of note,

all key parameters in RefFreeDMA have been empirically optimized and can

be changed by the user of the software.
Mapping and DNA Methylation Calling

Bisulfite alignment of the RRBS reads to the deduced genomes and to the

reference genomes, as well as themapping of the deduced genome fragments

to the reference genomes was performed using BSMAP v2.74 (Xi and Li,

2009) with the following command line: bsmap -a $input_fastq -d $ref_

genome_fasta -o $output_bam -D C-CGG -w 100 -v 0.08 -r 1 -p 4 -n 0 -S

1 -f 5 –u. For cross-mapping and alignment to the deduced genomes, the -D

parameter was not set, disabling the RRBS mode to allow mapping of reads

independently of restriction sites. Also, for cross-mapping, the maximum

allowed error rate (-v) was set to 0.2. The human (hg19) and cow (bosTau6)

reference genomes were downloaded from the UCSC Genome Browser,

and the carp reference genome was downloaded from the European Nucleo-

tide Archive (ENA) project PRJEB7241 assembly GCA_000951615.1. For bet-

ter handling, the 9,377 scaffolds of the carp genome were concatenated into

ten artificial chromosomes using stretches of Ns as separators. DNA methyl-

ation calling was performed using the biseqMethCalling.py software (Bock

et al., 2010).
Differential Methylation Analysis

CpG sites exhibiting differential DNA methylation between predefined groups

of samples were identified using hierarchical linear models as implemented in

the limma R package. Multiple testing correction was performed for CpG sites

using the false discovery rate method implemented in R’s p.adjust() function.

To assess the significance of differential DNAmethylation for entire fragments,

multiple testing corrected p values for all CpG sites contained in a fragment

were combined using an extension of Fisher’s method (Makambi, 2003) as im-

plemented in RnBeads (Assenov et al., 2014). Differentially methylated frag-

ments were priority ranked based on statistical significance as well as effect

size, calculating ranks individually for p value, log fold change, and absolute

difference in DNA methylation levels and then selecting the worst of the three

ranks as representative for the fragment. This way, fragments that achieve top

ranks in all of themeasures are favored, whereas fragments that are assigned a

bad rank in one or more of the measures are penalized.
thors
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Software Properties

RefFreeDMA is a Linux-based software pipeline that supports the various

steps of reference genome independent analysis of differential DNA methyl-

ation based on RRBS data. External software requirements are limited to stan-

dard command line tools for next generation sequencing analysis, including

picardtools, samtools, trimgalore, bowtie2, and bsmap. Runtime and memory

usage depend on the number of samples, the number of reads per sample, the

RRBS library complexity, and whether RefFreeDMA’s support for paralleliza-

tion is used. For the presented datasets, which comprise 12 to 20 samples

per species with�18million 50-bp single-end reads per sample, one complete

run using four cores (Intel Xeon E5-2650 processor) takes about 9 hr (wall-

clock time) with parallelization and 40 hr (wall-clock time) without. The peak

memory usage is 15 GB during consensus building. Although this study

focuses onCpGmethylation, our software also supports non-CpGmethylation

(when the nonCpG parameter is set to TRUE). RefFreeDMA is available as

open source under the GPLv3 license: http://RefFreeDMA.computational-

epigenetics.org.

Comparison between Reference-Free and Reference-Based

Analysis

Correspondence between the published reference genomes and the deduced

genomes is determined by mapping the deduced genome fragments to the

corresponding reference genome. The resulting associations between CpG

sites in the deduced genome and the reference genome serve as the basis

for the validations. Figure S2 depicts the correct match between the two ap-

proaches (case 1) as well as four scenarios in which discrepancies between

reference-free and reference-based analysis are expected (cases 2 to 5).

Comparisons between the reference-free and reference-based approaches

are performed at the level of individual CpGs and at the level of deduced

genome fragments.

Cross-Mapping Analysis

In order to establish a connection between deduced genome fragments iden-

tified by RefFreeDMA in one species and well-annotated genomes of other

species, deduced fragments were mapped to the human genome (hg19)

and the mouse genome (mm10) using BSMAP/RRBSMAP with a maximum

allowed mismatch rate of 20% as described in Mapping and DNA Methylation

Calling. Overlaps between the genomic positions of mapped deduced

genome fragments and annotations on the respective genome can then be

used to perform enrichment analysis for the deduced fragments. We assessed

differentially methylated fragments for enrichment of genomic annotations us-

ing LOLA (Sheffield and Bock, 2015). LOLA tests for significant enrichment of

overlap between user-defined genomic regions of interest (i.e., the fragment

mapping positions) and experimentally annotated genomic regions, which

are provided as a database. Thematched genomic regions for the differentially

methylated fragments (mean coverage > 2 and adjusted p < 0.05) of granulo-

cytes or lymphocytes were used as primary input regions (user set), while the

genomic regions of all mapped deduced genome fragments were used as

background (universe). The regions database for human (hg19) consisted of

region sets downloaded from Cistrome, CODEX, ENCODE, and the UCSC

Genome Browser as well as custom sets for DNase hypersensitivity sites

(Sheffield et al., 2013). The region database for mouse (mm10) consisted of re-

gion sets downloaded from CODEX and ENCODE.

Motif Enrichment Analysis

Motif enrichment analysis was performed using the command-line version of

the AME tool (McLeay and Bailey, 2010) from the MEME package. We used

the average odds score as sequence scoring method and the rank-sum test

as motif enrichment test. All motifs were obtained from the JASPAR CORE

(2014) Vertebrates database (Mathelier et al., 2014). Only enrichments with

an adjusted p value lower than 0.05 were reported. In order to find motifs

that are differentially enriched among differentially methylated fragments,

the top-500 differentially methylated fragments (mean coverage > 2 and

adjusted p < 0.05) of one sample groupwere used as primary input sequences,

while the top-500 differentially methylated fragments of the other group were

used as background (control sequences). To correct for motif enrichment due

to base composition bias (Figures 5B and S5C), we performed the same
Cell Rep
analysis on random sequences that were constructed to reflect the base

compositions of both groups on single nucleotide and dinucleotide level in

50 iterations each. To this end, the base compositions of the original se-

quences were determined using the fasta-get-markov tool from the MEME

package. The 0th- and 1st-order Markov models for each group were then

used as input for the gendb tool, which constructed 500 random sequences

(length �50 bases) according to the models. This process was repeated 50

times with different random seeds. Finally, for each iteration AME was run

on the shuffled sequences of one group as input and the shuffled sequences

of the other group as background. All motifs that were detected as significantly

enriched in more than 60% of all iterations were identified as false positives

due to base composition bias and removed from the list of differentially en-

riched motifs identified for the original sequences. Furthermore, to identify

motifs that might be enriched in differentially methylated fragments of both

groups, we ran AME using the original sequences as input and the respective

shuffled sequences as background. Onlymotifs that were found to be enriched

in at least 95% of the iterations were reported as truly enriched in the differen-

tially methylated fragments compared with the randomly shuffled sequences.

For each enriched motif, the least significant p value was reported.
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Figure S1. UML diagram outlining the RefFreeDMA software and analysis workflow, Related to Figure 1 

The diagram illustrates the RefFreeDMA software and its key computational steps for performing reference-free 
analysis of differential DNA methylation, starting from raw RRBS reads and resulting in a ranked list of 
differentially methylated sites and fragments. 



 

 

Figure S2. Sources of discrepancy between reference-free and reference-based analysis, Related to Figure 1 

Case 1 depicts concordance between the two approaches, which applies to the vast majority of non-repetitive 
fragments that are not entirely unmethylated in all samples. All matching CpGs are uniquely assigned to each 
other when aligning the deduced genome fragments to the reference genome. Case 2 depicts a scenario in which 
two deduced genome fragments overlap when aligned to the reference genome. Here, two measurements in the 
deduced genome are represented by only one measurement in the reference genome. Case 3 depicts genomic 
redundancy caused by repetitive sequences in the reference genome. In the deduced genome, these similar or 
sequence-identical regions are represented by one deduced genome fragment. Multiple CpG sites in the reference 
genome are thus represented by only one site in the deduced genome. Case 4 depicts the scenario where all reads 
are completely unmethylated for a given set of CpG sites. Deduced genome fragments covering these sites will 
contain a T instead of a C at the respective position, thereby reducing the number of CpG sites in the deduced 
genome. Case 5 depicts the effect of deduced genome redundancy, which can occur when fragments contain 
sequencing errors that make them too dissimilar to be merged into one consensus. 

  



 

Figure S3. Comparison of reference-free & reference-based DNA methylation analysis, Related to Figure 3 

(A) Concordance of mapped read positions (left) and covered CpG sites (right) between the reference-based and 
reference-free methods. For comparison, the concordance is also shown for the case of aligning the reads twice to 
the reference genome using different seeds for random assignment of reads that map to multiple positions 
(middle). “High confidence” fragments are those that are neither repetitive nor unmethylated in all samples. (B) 
Scatterplots illustrating the concordance of read mapping positions between the reference-free (y-axis) and 
reference-based (x-axis) methods. Representative plots of chromosome 7 are shown for each species (r: Pearson 
correlation; N: number of RRBS reads). (C) Pearson correlation of DNA methylation levels obtained with the two 
approaches, calculated for CpG sites as well as deduced genome fragments (frag.) with (+) and without (-) 
coverage filtering (requiring at least eight and not more than 200 mapped reads per CpG site or fragment). 

  



Figure S4. Valida-
tion of reference-
free analysis of 
differential DNA 
methylation, Re-
lated to Figure 4 

(A) Scatterplots dis-
playing the agree-
ment between dif-
ferential methyla-
tion ranks for dif-
ferentially methyl-
ated fragments (p-
value < 0.05) using 
the two approaches 
(ρ: Spearman corre-
lation coefficient; N: 
number of deduced 
genome fragments). 
(B) Recovery of the 
top-1000 differen-
tially methylated 
deduced genome 
fragments (p-value 
< 0.05, coverage ≥ 8, 
non-overlapping) 
determined by the 
reference-based 
approach in a grad-
ually increasing 
number of top dif-
ferentially methyl-
ated deduced ge-
nome fragments 
using the reference-
free approach (blue). 
The recovery within 
an equal number of 
randomly selected 
deduced genome 
fragments is shown 
for comparison 

(red). (C) Scatterplots showing the difference in mean fragment methylation between granulocytes and lymphocytes 
as determined by the reference-based (x-axis) vs. the reference-free (y-axis) approach for fragments that overlap with 
each other when mapped to the reference genome. Pearson correlations (r) for non-overlapping fragments are indi-
cated in brackets. This plot shows that differential DNA methylation values are not strongly affected by overlapping 
fragments (Case 2 in Figure S2). All fragments were coverage-filtered for at least eight and not more than 200 
mapped reads. (D) DNA methylation scatterplots demonstrating differential DNA methylation in granulocytes (x-
axis) vs. lymphocytes (y-axis) using the reference-based approach. Means across four biological replicates are shown 
for each cell type, and the green hexagons indicate the top-500 most differentially methylated fragments. Matched 
scatterplots for the reference-free analysis are shown in Figure 4C.  



Figure S5: Interpreta-
tion of DNA methyla-
tion differences through 
cross-mapping to anno-
tated genomes and mo-
tif enrichment analysis, 
Related to Figure 5 

(A)	 Mapping of the de-
duced genome fragments 
of human, cow, and carp 
to the reference genomes 
of human (hg19) and 
mouse (mm10). Mapping 
rates are displayed for 
maximum mismatch 
rates of 20% and 25%. 
(B)	 Region enrichment 
analysis for reference-
free deduced genome 
fragments that have been 
cross-mapped to the 
reference genomes of 
human (hg19) and mouse 
(mm10). For each group, 
the top-20 enrichments 
obtained by LOLA anal-
ysis are shown. Uncor-
rected p-values are plot-
ted on the y-axis, and the 
number of overlapping 
regions is indicated by 
bubble size. Each dot 

represents an experiment listed in the database, and the red dashed lines indicate p-values of 0.05. Similar plots for human and cow cross-mapping to the human genome (hg19) are 
shown in Figure 5A. (C) Nucleotide frequency differences between the top-500 deduced genome fragments in granulocytes (dots) and lymphocytes (triangles). (D) Complete list of 
enriched sequence motifs from JASPAR CORE (2014) Vertebrates database among the top-500 deduced genome fragments with increased DNA methylation in granulocytes vs. 
lymphocytes (right) and vice versa (left). The motif analysis used the opposing group as background. (E) Same as in panel D, but using randomly shuffled sequences with the same 
mono- and dinucleotide composition as background. The displayed motifs were identified as significantly enriched in at least 95% of iterations. 



Table S1. Summary statistics for the reference-free and reference-based analysis of DNA meth-
ylation in the blood dataset, Related to Figure 2 

Table showing for each of the analyzed samples and biological replicates the number of total reads, 
mapped reads, and informative reads (i.e., those that give rise to at least one valid DNA methylation 
measurement), mean DNA methylation levels of methylated and unmethylated spike-in controls, mean 
DNA methylation levels across CpG sites, non-CpG conversion rates, as well as the number of CpG 
measurements, number of covered CpGs, and mean informative sequencing coverage per CpG site. 

This table is provided as a separate Excel file.  

 

Table S2. Summary statistics for direct cross-mapping of carp RRBS reads to the human, mouse, 
and zebrafish genome with various choices of alignment parameters, Related to Figure 5 

Table listing for each of the carp samples the number of mapped reads, the percentage of mapped 
reads, and the number of CpGs covered using four different mapping approaches with different 
BSMAP parameters: Maximum mismatch rate of 0.08 with multi-mapping reads; maximum mismatch 
rate of 0.08 without multi-mapping reads; maximum mismatch rate of 0.2 with multi-mapping reads; 
and maximum mismatch rate of 0.2 without multi-mapping reads. 

This table is provided as a separate Excel file 
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