Supplemental Figure 1. Sequences for the primers used in ChIP and q-RTPCR analyses.

Supplemental Figure 2. FXR binds to key component genes of the FGF19 signaling pathway. Browser images from liver ChIP-seq data from mice treated with GW4064 for 1 h (Lee et al., Hepatology, 2012) using the UCSC genome browser. The direction of gene transcription is indicated by the arrow and the beginning of the arrow indicates the position of the transcriptional start site (TSS).

Supplemental Figure 3. Effects of pharmacological activation of FXR on β KL and Fgfr4 mRNA levels. Hepatocytes were isolated from WT or FXR-KO mice, were treated with 500 nM GW4064, and then, β KL and Fgfr4 mRNA levels were measured by q-RTPCR. SEM, n=6.

Supplemental Figure 4. Potential FXR binding sites as detected by the nuclear receptor binding motif search engine NUBIScan in the 700 bp genomic fragment of βKL containing a FXR binding site identified in ChIP-seq studies.

Supplemental Figure 5. Adenoviral-mediated FXR compensation experiments in FXR-KO mice. C57BL/6 wild-type (WT) and FXR knockout (FXR-KO) mice were tail-vein injected with either control Ad-Empty or Ad-FXR. One week later, livers were collected, and mRNA levels of β KL and Fgfr4 were measured by q-RTPCR.

Supplemental Figure 6. Effects of GW4064 treatment for different times on hepatic β KL protein levels. WT mice were injected with GW4064 for the times indicated. β KL protein levels in the liver were detected by IHC. Representative images of hepatic β KL from 3 independent IHC studies are shown.

Supplemental Figure 7. Pre-treatment with GW4064 enhances responsiveness to FGF19 signaling in primary human hepatocytes. Primary human hepatocytes (PHH) were pre-treated with GW4064 for 2 h, and then treated with FGF19 for 30 min. Protein levels of total (T-Erk) and phosphorylated (P-Erk) ERK were measured by IB (shown in duplicate).

Supplemental Figures

Chip qPCR primers	
Grb2 qChip-f1	AAGAGCACCCGTGCAAATAC
Grb2 qChip-r1	GAAGGATTTTTCCCCCATGT
Sos2 qChip-f1	ATGAGTCTTTGGGCAAGAGG
Sos2 qChip-r1	TCACAGTAGACAGGCCAGAATG
Ras qChip-f1	TTCACGACACAAAGCCACTC
Ras qChip-r1	AGGAGGTGGAGGTAGGGATG
Raf qChip-f1	CCGGGTCCTTTGTGAAGTAG
Raf qChip-r1	TGTGTTGCTGGGACTTGAAC
Map2k1 (Mek1) qChip-f1	GACATGTTTCAGAGGCAGCA
Map2k1 (Mek1) qChip-r1	TAGGTTTCAGCAGGCAGAGG
Ppp2cb qChip-f1	TCCCTGTTTTCTTCCACCTG
Ppp2cb qChip-r1	GATACTTCCCACCCAGCAGA
Map2k6 (Mek6) qChip-f1	TGCTAGGTGCCTTCCTGTCT
Map2k6 (Mek6) qChip-r1	GCTCAGTGGGTGGAGTGTTT
Mapk3 (Erk1) qChip-f1	TGAGGCAGGTCTTCAAAGGT
Mapk3 (Erk1) qChip-r1	CGCCTAGTTACGCTGTTCCT
βKL qChip-f1	GGCTCTGCAAAAAGGAACAG
βKL qChip-r1	CAGGTAAACCCCTTTGTCCA

Sequences for the primers used in ChIP and q-RTPCR analyses.

Cloning /EMSA primers	
βKL(700bp-wt)-Luc-f1	TTACTCGAGTATCATGCGCTGAGACATGAACT
βKL(700bp-wt)-Luc-r1	TAGAGATCTCTAGCTGCGTTCTAAGCTGTTCC
βKL(552bp-wt)-Luc-f1	TTGGTACCTACCCAGCACCCGAATAAAAC
βKL(552bp-wt)-Luc-r1	TTGCTAGCCATCTCGTGGTTCTGGTTTCCC
βKL(195bp)-Lu c-f1	TTGGTACCTAGAGTTTGACCCCCAGCAC
βKL(195bp)-Lu c-r1	TGCTAGCCTAGTGATGCCTCTGTGTGGATG
βKL(700bp-mut)-Luc-f1	TATATACAGGCCCTTTAATTACATATATTTCACTTGGAC
βKL(700bp-mut)-Luc-r1	GTCCAAGTGAAATATATGTAATTAAAGGGCCTGTATATA
βKL IR2 EMSA-f1	CAGGCCCTTGGGTCAAATGTCTTTCACTTGGAC
βKL IR2 EMSA-r1	GTCCAAGTGAAAGACATTTGACCCAAGGGCCTG
Shp IR1 EMSA-f1	TGGTACAGCCTGAGTTAATGACCTTGTTTATC
Shp IR1 EMSA-r1	GATAAACAAGGTCATTAACTCAGGCTGTACCA

gPCR primers	
m36B4-F	CGACATCACAGAGCAGGC
m36B4-R	CACCGAGGCAACAGTTGG
mβKL-F	CGAGCCCATTGTTACCTTGT
mβKL-R	CTCCAAAGGTCTGGAAGCAG
mFgfr4-F	GACCAAACCAGCACCGTGGCTGTGAAGATG
mFgfr4-R	GTTTCCCTTGGCGGCACATTCCACAATCA C
mGrb2-F	TCAATGGGAAAGATGGCTTC
mGrb2-R	GAGCATTTCTTCTGCCTTGG
mSos2-F	TGTTCGTCCATCAAATCCAA
mSos2-R	AGATGCTGTGCTTTCCGTCT
mRas-F	GGCTGTGCCTGGAGACTAAG
mRas-R	CTTCTGGCTCACCTGCCTAC
mRaf-F	TTCAGTGGCTGTCAGTCTGG
mRaf-R	ACTGTCCACTTCCCT
mMek1-F	CTAGTGACCTGGGTGGTCGT
mMek1-R	CACAAGGCTCCCTCTCAGAC
mPpp2cb-F	GGGGTCTGGTCACTTGAAAA
mPpp2cb-R	GATACTTCCCACCCAGCAGA
mMek6-F	ACTGGTCGACCCTACTGTGG
mMek6-R	CCCCTTTGGAGAGGAAAAAG
mErk1-F	TCCTTTTGGATCTGGTCCTG
mErk1-R	CCCCAGCAAAGTGAGAAGAAG
mCyp7a1-F	CATCTCAAGCAAACACCATTCC
mCyp7a1-R	TCACTTCTTCAGAGGCTGGTTTC
mCyp8b1-F	GAACTCAACCAGGCCATGCT
mCyp8b1-R	AGGAGCTGGCACCTAGACT
mShp-F	CAAGAAGATTCTGCTGGAGG
mShp-R	GGATGTCAACATCTCCAATG
h36b4-F	GGTCCTCCTTGGTGAACAC
h36b4-R	AAGGCTGTGGTGCTGATG
hCyp7a1-F	CAAGGAATCGCTGAGGCTTTC
hCyp7a1-R	ACCGTCCTCAAGGTGCAAAGT
hCyp8b1-F	AAGCATGGGGATGTGTTCAC
hCyp8b1-R	CAAACTTGCGGAACTCCATG
mFgf15 premRNA-F	CATGCACACAGCCTCTTGTC
mFgf15 premRNA-R	TCCATTTCCTCCCTGAAGGT
mβKL premRNA-F	тсөстөсттсстттстстө
mβKL premRNA-R	ATAGGCATCCTGCCACTCAA
mFgfr4 premRNA-F	сстстссттбтсстббсттт
mFgfr4 premRNA-R	CACTTTCCATCACCAGGCTC
mSHP premRNA-F	CAACTATCCGAAGGCCACAT
mSHP premRNA-R	АСССТСТСТАСССАССАСТ
mcyp7a1 premRNA-F	TTTGCATCATGGCTTCAGAG
mcyp7a1 premRNA-R	ТСТТССАБАСАСТССССААС

Sequences for the primers used in ChIP and q-RTPCR analyses. (Con't)

Fig. S1. Sequences for the primers used in ChIP and q-RTPCR analyses.

Fig. S2. FXR binds to key component genes of the FGF19 signaling pathway. Browser images from liver ChIP-seq data from mice treated with GW4064 for 1 h (Lee et al., Hepatology, 2012) using the UCSC genome browser. The direction of gene transcription is indicated by the arrow and the beginning of the arrow indicates the position of the transcriptional start site (TSS).

Fig. S3. Effects of pharmacological activation of FXR on β KL and Fgfr4 mRNA levels. Hepatocytes were isolated from WT or FXR-KO mice, were treated with 500 nM GW4064, and then, β KL and Fgfr4 mRNA levels were measured by q-RTPCR. SEM, n=6.

Graphical representation of the predictions along your sequence.

X axis: position in basepairs

FXR binding peak region, 700bp (chr5:65,764,431-65,765,130)

Y axis: raw score on sense (top) and antisense (bottom) strand

Fig. S4. Potential FXR binding sites as detected by the nuclear receptor binding motif search engine NUBIScan in the 700 bp genomic fragment of β KL containing a FXR binding site identified in ChIP-seq studies.

Fig. S5. Adenoviral-mediated FXR compensation experiments in FXR-KO mice. C57BL/6 wild-type (WT) and FXR knockout (FXR-KO) mice were tail-vein injected with either control Ad-Empty or Ad-FXR. One week later, livers were collected, and mRNA levels of β KL and Fgfr4 were measured by q-RTPCR.

Fig. S6. Effects of GW4064 treatment for different times on hepatic β KL protein levels. WT mice were injected with GW4064 for the times indicated. β KL protein levels in the liver were detected by IHC. Representative images of hepatic β KL from 3 independent IHC studies are shown.

Fig. S7. Pre-treatment with GW4064 enhances responsiveness to FGF19 signaling in primary human

hepatocytes. Primary human hepatocytes (PHH) were pre-treated with GW4064 for 2 h, and then treated with FGF19 for 30 min. Protein levels of total (T-Erk) and phosphorylated (P-Erk) ERK were measured by IB (shown in duplicate).