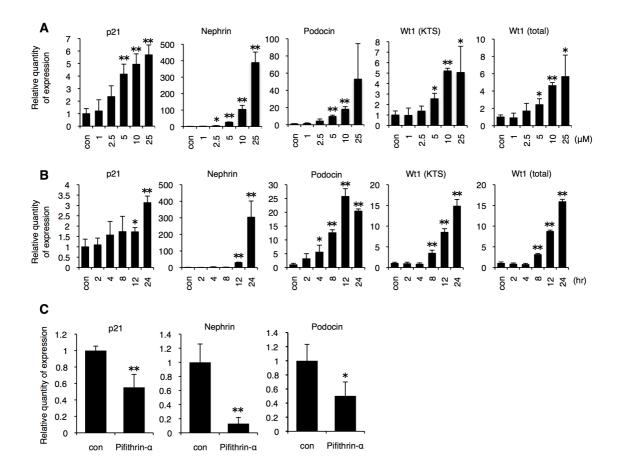
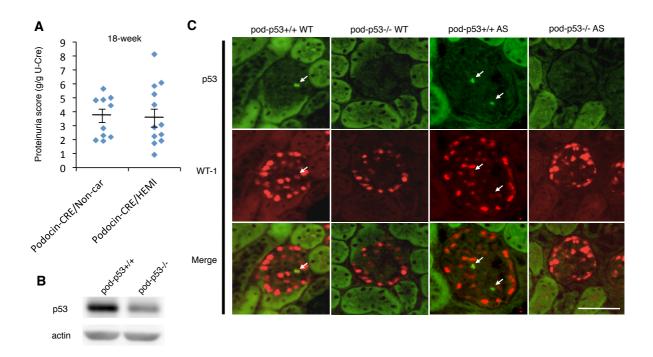
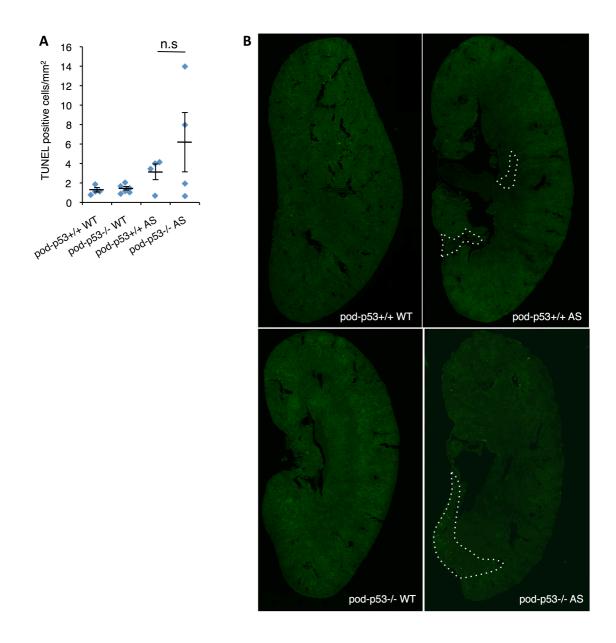
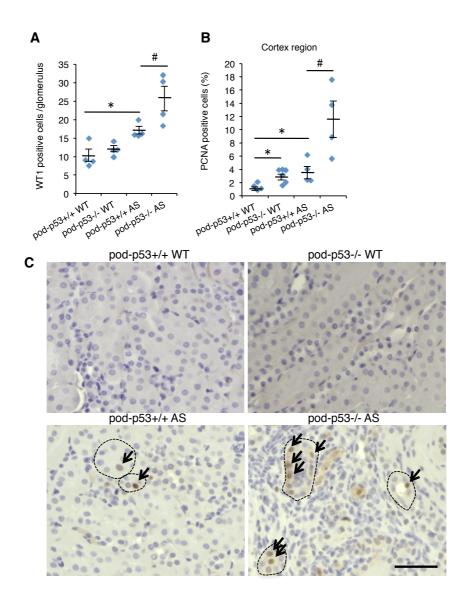

Podocyte p53 limits the severity of experimental Alport syndrome


Ryosuke Fukuda, Mary Ann Suico, Yukari Kai, Kohei Omachi, Keishi Motomura, Tomoaki Koga, Yoshihiro Komohara, Kosuke Koyama, Tsubasa Yokota, Manabu Taura, Tsuyoshi Shuto, Hirofumi Kai


Supplementary Figure 1. Whole-body p53 deletion has no effect on renal function. (A) p53 mRNA expression in the glomeruli of 21-week-old WT and AS mice was determined by real time RT-PCR. mean \pm s.e.m., n=3. Urine and plasma samples were obtained from 15-week-old p53+/+, +/- and -/- mice. (B) Proteinuria, (C) Urine-albumin and (D) BUN score were measured. (mean \pm s.e.m., n=3-7). There were no differences in renal function between each p53 genotype. n.s., not significant.


Supplementary Figure 2. Whole-body p53 knockout dramatically enhanced renal injury in AS mouse. Masson's trichrome staining was performed in 15-week-old p53-/- AS mouse. Severe renal fibrosis was observed. Tubular dilation and protein cast formation (marked as *) was dramatically enhanced. Scale bar, 100 µm.

Supplementary Figure 3. p53 positively regulates podocyte-specific genes in MPC-5 and primary GECs. (A) Differentiated MPC-5 cells were treated with the indicated concentration of nutlin-3 α for 24 hr or (B) treated with 10 μ M nutlin-3 α for 2 to 24 hr. Real time RT-PCR was performed to analyze the expression of genes. *WT-1* (KTS) means transcriptional variant, which contains KTS region that is important for the regulation of renal function genes. Primers used for detecting *WT-1* (total) recognize all transcriptional variants of *WT-1*. (C) Primary GECs were treated with 50 μ M pifithrin- α for 24 hr to suppress p53 function. Expression of *p21*, *Nephrin* and *Podocin* was analyzed by real time RT-PCR. *Gapdh* was used as internal control. (mean ± s.e.m., n=3). *P < 0.05, **P < 0.01.


Supplementary Figure 4. Influence of podocyte-specific gene editing on the renal phenotype. (A) Proteinuria score was measured and compared between *Podocin*-Cre recombinase non-carrier mice (*Podocin*-Cre/non-car) and *Podocin*-Cre recombinase carrier mice (*Podocin*-Cre/HEMI). 18-week-old littermate mice were separated in each group. Urine samples collected for 24 hr were used for assay. (mean \pm s.e.m., n=10, 12). (B) p53 expression in the glomeruli of pod-p53+/+ or pod-p53-/- mouse was analyzed by Western blotting. Glomeruli were isolated from 24-week-old mice by magnetic beads method. (C) Frozen sections of renal cortex harvested from 15-week-old mice were stained for immunofluorescence with antibodies against p53 (green) and WT-1 (red) or with type-IV collagen (green) and WT-1 (red). White arrows indicate p53, WT-1 and merged cells. Scale bars, 50 µm.

Supplementary Figure 5. p53 deletion promoted apoptosis in partial regions of renal tissue in AS mouse. Apoptotic cells in the renal tissue of 15-week-old pod-p53+/+ or -/- WT and AS mice were analyzed by TUNEL assay. (A) TUNEL-positive cells / mm^2 of renal tissue were quantified. (mean ± s.e.m., n=4-6). There were no statistical differences among groups. (B) Images of TUNEL-stained renal tissue revealed that apoptotic cells in pod-p53+/+ and pod-p53-/- AS groups were localized in atrophic regions (shown by broken line).

Α			Whole kidney (vs. pod-p53+/+ WT, n=4)		
			WT	l A	NS .
		pod-p53	-/-	+/+	-/-
WT MT - AS -		n=	7	3	4
pod-p53+/+ WT pod-p53-/- WT pod-p53+/+ AS pod-p53-/- AS		Cyp1b1	0.85(±0.07)	1.35(±0.17)	1.9(±0.23)*
p53- p53		Dusp14	1.17(±0.06)	1.22(±0.08)*	1.63(±0.05)**,##
-poc		Serpinb8	0.93(±0.05)	1.1(±0.14)	1.71(±0.24)*
Ddit4 Angptl4 Slc13a1	Mmp12 Aqr	Tnfsf15	0.75(±0.07)*	2.21(±0.34)**	2.62(±0.37)**
Sic13a1 Cyr61 Hsp110	Ciec4n Pilrb2 Ccl2	Elmod2	1.07(±0.06)	1.31(±0.08)	1.53(±0.14)*
Acsi4 Ari4c A2bp1	Upk3b Dck Cdkn3	Rasd1	0.92(±0.07)	1.91(±0.32)*	2.91(±1.06)
Cntr Lcn2 Nek2	Hrh2 D12Ertd551e	Col1a1	0.96(±0.13)	5.61(±0.98)**	11.83(±2.34)**
Maff Lrtm2 Cnn1	ENSMUSG00000053118 Plxnc1 Sic10a6	Lmtk2	1.02(±0.07)	0.96(±0.02)	0.82(±0.05)
Aldh1a1 Lox	Frzb Hsd11b1	Crygn	N.A.	N.A.	N.A.
EG330403 Tnfrsf12a	Fkbp5 Cxcl9	Rad51	1.25(±0.12)	1.49(±0.12)	1.85(±0.14)**
BB146404 Ppm11 C1qa	li33 Olfmi3 Cfhr1	Cdc2a	0.76(±0.05)*	3.7(±0.30)**	10.17(±2.83)*
Asb2 Dusp14	Ociad2 Elmod2 Krt19	Kif20a	1(±0.14)	3.3(±0.08)**	5.6(±0.64)** ^{,#}
Nusap1 Prss23 Aldh1a1	Rgs1 Lum Chr2	lgfbp3	1.28(±0.09)	0.49(±0.03)*	0.34(±0.05)**
Serpinb8 Adamtsl1 Tagin	Rasd1 1110032A04Rik Col1a1	Rspo1	1.19(±0.09)	5.86(±0.90)**	7.49(±2.35)*
Cxčl12 Tnfsf15 Serpinb6b	Col1a1 Q7TQ39_MOUSE Krt15 Lmtk2	Abp1	0.97(±0.09)	11(±2.19)**	33.64(±6.67)**,#
Ckap2 Igfbp2	Mdm4 Kap	Kcne3	1.11(±0.06)	1.72(±0.52)	1.88(±0.34)
Adamts8 Kcne3 Mif1	Acsm3 Pdgfra	Ube2t	1.11(±0.11)	3.07(±0.81)*	5.4(±1.14)**
Masti Sucnr1	Sostdc1 Abca13 Lhx1	Racgap1	1.04(±0.08)	2.8(±0.40)**	4.92(±0.77)**
C1qc Ube2t Ms4a7	Sic12a3 2210409E12Rik Defb1	Ccne2	1.16(±0.15)	2.2(±0.14)**	3.32(±0.45)**
Hacgap1 Hspa8 Ccne2	Ppp1r1a Mep1b Gal3st1	Kif22	1.18(±0.18)	3.63(±0.29)**	7.31(±1.37)**
Nupr1 E430002G05Bik 5430433G21Bik	Uroc1 KI Cyp4a12b Laro2	Kif11	1.2(±0.15)	3.61(±0.53)**	7.54(±1.64)**
Adm Apin Col5a3	Edfp2 Phxr4 Lect1	Pbk	1.31(±0.25)	4.41(±0.84)**	6.91(±0.46)** ^{,#}
Serpinf1 Crygn Mocs1	Sico1a1 Cyp26a1 2010007H06Rik	Ckap2l	1.08(±0.14)	3.97(±0.66)**	7.35(±1.29)**
Rad51 Cdc2a Hmmr	Csf3	Upk3b	1.39(±0.36)	2.5(±0.53)*	3.33(±2.15)
Kif20a Spbc24 Conb2	4 2 0 2 4 (fold)	Cdkn3	1.26(±0.23)	4.73(±0.48)**	9(±1.58)**
4833427B12Rik Ccna2	-4 -2 0 2 4 (fold)	Frzb	1.1(±0.08)	1.85(±0.02)**	1.93(±0.28)*
Birc5 Cdca3		Fkbp5	1.19(±0.13)	1.41(±0.15)	1.35(±0.09)
Kit22 Kit11		Cntf	0.96(±0.09)	1.65(±0.18)*	2.57(±0.60)*
Mki67 Tpx2 Pbk		Adamtsl1	1.19(±0.08)	2.46(±0.28)**	4.34(±1.46)
Top2a Ckap2l Rrm2		Lhx1	0.91(±0.05)	0.93(±0.04)	0.77(±0.12)
Timp1 Epha6 Tspan2		Larp2	0.89(±0.03)	1.06(±0.07)	0.93(±0.07)
Gdpd2 BC064033 Jafbo3		Pdgfra	1.3(±0.09)	1.91(±0.29)*	3.43(±1.12)
Ayti1 Gabra4					
Ppp1r12a AA467197					

Supplementary Figure 6. (A) Microarray analysis of glomerular gene expression pattern. Microarray analysis of mRNA extracted from the glomeruli of indicated mouse group. Cluster analysis was performed using Cluster 3.0 software. The whole image is shown. Details of the gene cluster in yellow boxes are shown in main Figure 6B. (B) Total RNA was extracted from whole kidneys of 15-week-old pod-p53+/+ WT, pod-p53-/- WT, p53+/+ AS and p53-/- AS mice. The mRNA expression level of the indicated genes was analyzed by quantitative RT-PCR. *Gapdh* was used as internal control. The values are mean \pm s.e.m. (n=4). *P < 0.05, **P < 0.01 vs. pod-p53+/+ WT. *P < 0.05, **P < 0.01 vs. pod-p53+/+ AS.

Supplementary Figure 7. Podocyte-p53 deletion promoted proliferation of podocytes and non-glomerular cells in kidneys of AS mice. (A) Immunofluorescent staining against WT-1 antigen was performed on renal sections of 15-week-old mice shown in Figure 4B (WT-1). WT-1-positive cells per glomeruli were counted. WT-1-positive cells were counted in 30 to 113 glomeruli per mouse. (mean \pm s.e.m., n=4-6). (B) PCNA-positive cells in the cortex region were counted and quantified from the result of immunohistochemical staining. PCNA-positive cells were frequently observed in non-glomerular region such as tubular cells of pod-p53-/- AS mouse group. (mean \pm s.e.m., n=3-6). *P < 0.05 vs. pod-p53+/+ WT. [#]P < 0.05 vs. pod-p53+/+ AS. (C) Renal cortex sections from 15-week-old mice of the indicated genotype were stained with PCNA and counterstained with hematoxylin. Black arrows indicate PCNA-positive cells. Tubular region is indicated by black broken lines. Scale bars, 50 µm

	primer FW	primer RV
mCyp1b1	CACCAGCCTTAGTGCAGACAG	GAGGACCACGGTTTCCGTTG
mDusp14	TTGCTCAGATCACCTCCTCTC	AGTACAGTCTAATGGGGGCAT
mSerpinb8	AGGCTGGACTAGAAGAGCTGT	CGTGTACTTTCGGTCAAACTGA
mAdamtsl1	CTGTGAGGCGGTAGGCAAC	TCCCAAGGCATTTGTGGCATT
mTnfsf15	TCTGGTCAGAAGGGATCAGAAG	GTCCTGCGAGGATGGGAAATG
mKcne3	ATGGAGACTTCCAACGGGACT	GCCCGACGATCCTCAGTTTG
mUbe2t	GTGCTGGCAGGAAAAGGATCA	ATCGGACCTGTGGAGGTTCAA
mRacgap1	TGCCCGTAATCAAGTGGACG	CTTGGCCTCGGTTGAGGAAAG
mCcne2	GGGAGACATTTTACCTTGCCC	TCTTGGAGTTTAGGAGCGTAGAT
mCrygn	GCCAGTGCCTAGAGTTCGTG	AAGCAGCGGTAGTCTCCTCTC
mRad51	CGGGAGTTGGTGGGTTATCC	CCGGCACATCTTGGTTTATTTGT
mCdc2a	GCAATGGGGACCCCTTTTTC	GGTGTAGATGTTCCTAACCGC
mKif20a	CAGCGGGCTTACTCTCTGATG	TCCTCCAGTAGAGCCTGCTTG
mKif22	CTGCTCTCTTGAAGTGGCTAAC	CCATAGGCAAGTACACTGGCAT
mKif11	GGCTGGTATAATTCCACGCAC	CCGGGGATCATCAAACATCTG
mPbk	TGGGCCGTGAAAAAGATAAGTC	CTGGCTTCAGTAAAAGCACGATA
mCkap2l	CAGCCAAGGGAAAGCTAAAGG	TGCTAGGCAAAACATGATTGGA
mlgfbp3	CCAGGAAACATCAGTGAGTCC	GGATGGAACTTGGAATCGGTCA
mRspo1	GGGATCAAGGGCAAGAGACAG	CTGGCGGATGTCGTTCCTC
mAbp1	GCGTGTTGCCTATGAGGTCAG	AAAGCATCCAGGAAAGTAGCG
mUpk3b	AGACCTGATTGCCTACGTGC	GGTGTCCTTAGTTGAGACATGCT
mCdkn3	ATGAAGCCGCCCATTTCAATA	GGAAGAGCACATAAACCGAGAA
mFrzb	GCTGTGCAAGTCCCTTCCC	TGCAAATGGGTGCGTACATTG
mFkbp5	TGAGGGCACCAGTAACAATGG	CAACATCCCTTTGTAGTGGACAT
mElmod2	TGGACACTTTTTCCGATTTTGGA	ACTCGTGTTGCATTCTGTAGGA
mRasd1	GATGTGCCCAAGCGACTCT	TGAGGAAGCGCGACACAAT
mCol1a1	CTGGCGGTTCAGGTCCAAT	TTCCAGGCAATCCACGAGC
mLmtk2	GCAGGGGAAGTACCTGTTGTA	CTGGTGGGGTGAAGTCTATCT
mCntf	TAGAGCGGCTACAGAGGTCC	CAAACCAGCTCACTTGTTTCC
mPdgfra	GGAGACTCAAGTAACCTTGCAC	TCAGTTCTGACGTTGCTTTCAA
mLhx1	CCCATCCTGGACCGTTTCC	CGCTTGGAGAGATGCCCTG
mLarp2	ACACGGGGTCTCAGAGTGTTA	TCACATCATCTAAGTGGAGTGGT

Supplementary Table 1. Sequences of primers used for quantitative RT-PCR to confirm the mRNA expression of altered genes in the microarray analysis.