Electrostatic Energetics of *Bacillus subtilis* Ribonuclease P Protein Determined by Nuclear Magnetic Resonance-Based Histidine pK_a Measurements Pamela L. Mosley, Kyle G. Daniels, and Terrence G. Oas ## **Supporting Information** **Figure S1**: Titration of NMR sample with a $0.5-0.4~\mu l$ aliquot of NaOH using a $5.0~\mu l$ positive displacement syringe extended with polyethylene tubing. **Figure S2**: L-Histidine (internal standard) titration curves under different buffer conditions. In addition to the components indicated, each sample had 10 mM pyridine, 90% H_2O , and 10% D_2O . The $^{13}C^{\epsilon 1}$ protons were used to determine the pK_a values and Hill coefficients for L-Histidine, listed in panel **F**. Uncertainties are based on the standard errors of the fitted parameters. **Figure S3**: ${}^{13}C^{\epsilon 1}$ P protein histidine chemical shifts versus ${}^{13}C^{\epsilon 1}$ L-Histidine chemical shifts titration curves for (**A**) sulfate-bound folded and (**B**) unfolded P protein. H3, H22, and H105 are represented as the blue, red, and green curves, respectively. The purple curve in (**B**) represents the H22 intermediate peak. **Figure S4**: NMR resonances from all three histidine residues in the unfolded state of P protein were assigned by comparing spectra of (**A**) F107W P protein to spectra of two variants, (**B**) H105A and (**C**) H22A, that each lack a different histidine residues. All spectra were collected at a sample pH of 4. Assignment spectra for the sulfate-bound folded state are not shown. Figure S5: ${}^{1}H^{\epsilon 1}$ N-acetyl-L-Histidine methylamide chemical shifts versus ${}^{1}H^{\epsilon 1}$ L-Histidine chemical shifts titration curves in the (**A**) presence and (**B**) absence of 20 mM sodium sulfate. The estimated pK_a of N-acetyl-L-Histidine methylamide was (**A**) 6.52 ± 0.03 and (**B**) 6.44 ± 0.02 . **Figure S6**: NMR resonance from intermediate peak in the unfolded state of P protein was assigned by comparing spectra of F107W P protein to spectra of two variants, (**A**) H3A and (**B**) H22A, that each lack a different histidine residue. The left sides of panels (**A**) and (**B**) correspond to spectra that were collected at a sample pH of 5.85 and 6.10, respectively. **Figure S7**: ¹H-¹³C HSQC unfolded P protein spectra in various pH buffers. The intensity of the H22 intermediate peak (H22 I) increases as the pH is increased. **Figure S8**: (A) Pyridine (internal standard) and (B) P protein histidine residue titration curves in the presence of 20 mM sulfate using pyridine as the internal standard. Inset table lists the best-fit pK_a values, using pyridine as an internal standard instead of L-histidine. **Figure S9**: Determination of the tautomeric state of the neutral form of the protein and model compound histidines in (A) 20 mM NaSO₄ (folded P protein) and (B) 0 mM NaSO₄ (unfolded P protein). All P protein histidines in both folding and unfolding conditions show very similar tautomeric state populations to the model compound N-acetyl-L-Histidine-methylamide, indicating that the protein histidines are highly solvated and form water hydrogen bonds under all conditions. The error bars represent 95% confidence levels obtained from peak fitting. The beige bands represent 95% confidence levels in the best-fit chemical shift. The fitting function is described in Materials and Methods. **Table S1**: Histidine pK_a values and Hill coefficients in unfolded, intermediate, and sulfate-bound folded P protein based on fitting 13 C^{$\epsilon 1$} data. a | Residue | pK_a^{F} | $\mathbf{n^F}$ | pK_a^{I} | n ^I | pK_a^{U} | \mathbf{n}^{U} | |---------|---------------------|-----------------|-----------------|-----------------|---------------------|---------------------------| | His 3 | 6.32 ± 0.02 | 1.10 ± 0.06 | 5.73 ± 0.04 | 0.94 ± 0.09 | 5.73 ± 0.04 | 0.94 ± 0.09 | | His 22 | 6.10 ± 0.05 | 0.99 ± 0.12 | 5.40 ± 0.55 | 0.91 ± 0.41 | 6.11 ± 0.04 | 0.95 ± 0.09 | | His 105 | 5.55 ± 0.05 | 0.90 ± 0.03 | 5.80 ± 0.03 | 0.96 ± 0.08 | 5.80 ± 0.03 | 0.96 ± 0.08 | $[^]a$ Solutions contained 10 mM L-Histidine, 10 mM pyridine in 90% H₂O, 10% D₂O at 25°C with either 0 mM or 20 mM sodium sulfate. The pK_a values were obtained by fitting the data to Eq 5. The 13 C^{e1} shifts were used to determine the pK_a values. Uncertainties represent the 95% confidence intervals and were obtained as described in Materials and Methods. **Table S2:** Solvent exposure of the histidine sidechains in P protein, relative to Gly-His-Gly, calculated as described in Materials and Methods. | | Relative accessible | | | |---------|---------------------|--|--| | Residue | surface area (%) | | | | His 3 | 70 | | | | His 22 | 61 | | | | His 105 | 57 | | | **Table S3:** ¹H and ¹³C chemical shifts of internal standard L-Histidine, Pyridine, and P protein histidine residues when the imidazole ring is fully protonated (pH~4) or deprotonated (pH~8). Uncertainties represent the 95% confidence intervals and were obtained as described in Materials and Methods. | | 0 mM Na ₂ SO ₄ | | 20 mM Na ₂ SO ₄ | | | |--------------------|--------------------------------------|-------------------|---------------------------------------|-------------------|--| | δ (ppm)
Residue | ¹ H | ¹³ C | $^{1}\mathrm{H}$ | ¹³ C | | | L-Histidine (pH~4) | 8.66 ± 0.01 | 136.25 ± 0.03 | 8.65 ± 0.01 | 136.26 ± 0.02 | | | L-Histidine (pH~8) | 7.72 ± 0.01 | 138.59 ± 0.03 | 7.72 ± 0.01 | 138.59 ± 0.02 | | | Pyridine (pH~4) | 8.08 ± 0.01 | 129.47 ± 0.05 | 8.09 ± 0.01 | 129.49 ± 0.03 | | | Pyridine (pH~8) | 7.45 ± 0.01 | 126.58 ± 0.02 | 7.46 ± 0.01 | 126.57 ± 0.01 | | | His 3 (pH~4) | 8.61 ± 0.01 | 135.81 ± 0.06 | 8.62 ± 0.01 | 135.99 ± 0.02 | | | His 3 (pH~8) | 7.69 ± 0.01 | 138.33 ± 0.07 | 7.67 ± 0.01 | 137.98 ± 0.04 | | | His 22 (pH~4) | 8.60 ± 0.01 | 135.82 ± 0.05 | 8.70 ± 0.01 | 136.28 ± 0.05 | | | His 22 (pH~8) | 7.67 ± 0.01 | 138.48 ± 0.08 | 7.74 ± 0.01 | 138.46 ± 0.09 | | | His 105 (pH~4) | 8.54 ± 0.01 | 135.65 ± 0.06 | 8.65 ± 0.01 | 136.14 ± 0.07 | | | His 105 (pH~8) | 7.69 ± 0.01 | 138.52 ± 0.06 | 7.81 ± 0.01 | 137.99 ± 0.05 | |