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S1 Review of methods that relate genetic data to a geographic map

To clarify how EEMS relates to existing methods, we discuss various other approaches that make use of

sampling locations in their analysis or interpretation of genetic data and that have as primary output a visual

display of spatial patterns. Our goal is to provide a brief summary but also to emphasize the unique aspects

of the EEMS approach to modeling geo-referenced genetic data.

One class of methods first analyze the genetic data to discover patterns of genetic similarities and then utilize

the sampling information post hoc to display and interpret the results. For example, principal component

analysis (PCA) of genetic data does not incorporate sampling locations but PCA results are often presented

by coloring samples from the same sampling unit (e.g. country or region) in the same color. Similarly,

Structure, in its original formulation (Pritchard et al., 2000), and FineStructure (Lawson et al., 2012) do not

use the sampling locations to specify their cluster-based models of the genetic data, yet the outputs are

often organized geographically. Structure infers individual ancestry proportions and these vectors are often

arranged into a stacked bar chart so that the individuals from the same geographical unit are plotted together

along the x-axis of the chart. FineStructure groups individuals into a hierarchy of genetic clusters. If precise

geographic information is available, individuals are plotted on a map and colored according to their cluster

membership; if the genetic clusters are geographically localized, spatial patterns of shared ancestry are often

displayed in pie charts pinned to the map (Leslie et al., 2015). Spatial ancestry analysis (SPA) (Yang et al.,

2012) can produce PCA-like scatter plots of inferred locations on a two-dimensional plane when sampling

locations are unknown (or treated as unknown) and individuals are typically colored in a manner similar to

PCA plots. Notably, though these approaches produce varied visual summaries, the geographic information

is used only to guide interpretation and not taken into account quantitatively to fit the underlying model. (If

sampling locations are known, SPA can also model geographically indexed genetic data to estimate spatial

trends in allele frequency, in a framework very different from EEMS, as we discuss below).

A second class of methods, and the one that EEMS falls into, use an explicitly spatial model and analyze

the genetic and the geographic data jointly. The methods in this class address very different inferential tasks,

including spatially aware genetic clustering, e.g. (Guillot et al., 2005); interpolation of allele frequency surfaces

and sample localization, e.g. (Yang et al., 2012; Wasser et al., 2004; Baran et al., 2013; Rañola et al., 2014);

estimation of mean dispersal distances using spatial autocorrelation or allele distributions, e.g. (Epperson and

Li, 1996; Novembre and Slatkin, 2009); and detection of non-homogeneous gene flow in continuous space,

e.g. (Duforet-Frebourg and Blum, 2014). This list of tasks is extremely diverse and EEMS addresses only the

last one. Other methods for analyzing local variation in dispersal include Monmonier’s maximum difference

algorithm (Manni et al., 2004), Wombling methods (Manel et al., 2007) and LocalDiff (Duforet-Frebourg and

Blum, 2014). Monmonier’s algorithm analyzes observed genetic differences but it requires that discrete

groups be specified a priori to detect strongly differentiated pairs. Wombling methods can detect strong

barriers without pre-specified clustering, by estimating spatial gradients in allele frequencies and identifying

localized sharp discontinuities. LocalDiff (Duforet-Frebourg and Blum, 2014) uses a spatial Gaussian process to

interpolate allele frequencies before assessing local patterns of differentiation among neighboring populations.

The algorithmic flavor of these methods contrasts with EEMS, which directly models landscape inhomogeneity
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through its effects on expected coalescent times.

We want to particularly emphasize the differences between EEMS, Geneland (Guillot et al., 2005) and SPA

(Yang et al., 2012), since these methods all produce visual summaries of spatial patterns from geo-referenced

data, and so may appear superficially similar. In fact the three methods have different inferential goals, and

so their visualizations are not directly comparable. SPA (Yang et al., 2012) infers spatial variation in local

allele frequencies. Such frequency surfaces may, of course, partly reflect complex non-homogeneous patterns

of gene flow, but graphical representations of such an allele surface (one for each SNP) cannot be directly

compared with an EEMS map, which attempts to highlight variations in rates of gene flow. Put another way,

while allele frequency maps visualize spatial variation in allele frequency, EEMS maps attempt to visualize the

effective migration processes that could have given rise to this spatial variation. Geneland (Guillot et al., 2005)

tackles a different problem again: clustering genetic samples. Geneland uses the geographical location of each

sample to help inform the clustering, and produces a map in which each location is colored according to its

(most likely) cluster membership. This map illustrates the spatial distribution of genetically distinct groups

but does not attempt to represent relationships between clusters. For example, there is no indication whether

some clusters are more similar than others. And displaying genetic cluster membership on a map is, of course,

completely different from displaying effective migration rates. We also note that while both Geneland and

EEMS make use of Voronoi tessellations, they do so in fundamentally different ways. In Geneland, each

Voronoi tile belongs to one of K genetic clusters that comprise the population, and the tessellation serves

as a modeling device to favor cluster assignments where geographically close individuals are assigned to

the same genetic cluster. In EEMS, each Voronoi tile has a characteristic migration rate, and the tessellation

serves to favor inferences where geographically close areas have the same migration rate. The fact that both

methods make use of Voronoi tessellations is, therefore, merely a superficial similarity. Of course, for any

given geo-referenced dataset, all three of these tools – and more – may provide useful insights.

S2 Mathematical and computational details of the EEMS method

Here we provide technical details about the EEMS method for estimating effective migration and diversity rates

from geo-referenced genetic data. In Section S2.1 we derive expressions for the expected genetic dissimilarity

E{D} at a random SNP or microsatellite, as a function of expected coalescence time. In Section S2.2 we derive an

approximation for the expected genetic dissimilarities in a spatial (stepping stone) model, in terms of effective

resistances in an undirected weighted graph. In Section S2.3 we explain how to compute efficiently the Wishart

likelihood ℓ(k,m, q, σ2) for the degrees of freedom k, the effective migration rates m, the effective diversity rates

q and the variance scale σ2. In Section S2.4 we explain how the effective resistances R in an undirected weighted

graph can be computed efficiently, for the purpose of evaluating the likelihood ℓ(k,m, q, σ2). In Section S2.5

we describe how to use birth-death Markov Chain Monte Carlo to sample from the posterior distribution

π(k,m, q, σ2 |D).
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S2.1 Expected genetic dissimilarities in population genetics

We derive the expected genetic dissimilarity between two distinct individuals i and j as a function of their

expected coalescence time Ti j. In population genetics, expected coalescence time can be considered a distance

metric: the larger Ti j is, the more differentiated i and j are, as they would not share mutations either lineage

accumulates after the split from their most recent common ancestor (MRCA). We consider a randomly selected

genetic marker l, either a SNP or a microsatellite, in a haploid or a diploid species. Let Zil denote the genotype

of individual i at locus l. Then the squared difference (Zil − Z jl)2 is a measure of the genetic dissimilarity

between i and j at the locus l.

Expected dissimilarities at a random SNP in a haploid species

Suppose that SNP l is genotyped in a sample of size n. Following (McVean, 2009), we condition on the event S

that the SNP segregates in the sample and we take the limit θ→ 0, where θ is the mutation rate. In a haploid

species, Zil ∈ {0, 1} is the allele carried by individual i at SNP l and the event S is equivalent to observing

exactly one mutation. The expected genetic difference (Zil − Z jl)2 is the probability that Zil , Z jl and

E
{
(Zil − Z jl)2 | S

}
= Pr

{
Zil , Z jl |S

}
= Pr{Zil , Z jl}/Pr{S} (S1a)

= lim
θ→0

E
{
(θti j) exp(−θti j)

}
E
{
(θttot/2) exp(−θttot/2)

} = 2Ti j

Ttot
, (S1b)

where the t’s are random coalescence times and the T’s are their expectations, under the coalescent process.

Two haploid individuals i and j carry a different allele, {Zil , Z jl}, if and only if a mutation occurs on the path

from i to j through the pair’s MRCA, which is of expected length 2Ti j. The denominator Ttot is the expected

total length (sum of all branches) of a random genealogy that describes the history of all n individuals back to

the sample’s MRCA.

Expected dissimilarities at a random SNP in a diploid species

We model the genotype of a diploid individual i as the sum of two haplotypes i1 and i2. Thus Zil = Zi1l +Zi2l ∈
{0, 1, 2} where the subscript indicates one of two alleles. To derive the expected genetic dissimilarity between

two distinct individuals i and j, we condition on the event S and take the limit θ→ 0 as in the haploid case:

E
{
Z2

i1l |S
}
= E
{
Zi1l |S

}
= Tmrca/Ttot, (S2a)

E
{
Zi1lZ j1l |S

}
=
(
Tmrca − Ti j

)
/Ttot, (S2b)

where Tmrca denotes the expected coalescence time to the MRCA of all sampled individuals, i.e., the height of

the average genealogy of the sample. By applying equations (S2a) and (S2b) repeatedly, we obtain:

E
{
(Zil − Z jl)2 |S

}
= E
{(

Z2
i1l + Z2

i2l + Z2
j1l + Z2

j2l

)
+ 2Zi1lZi2l + 2Z j1lZ j2l − 2

(
Zi1lZ j1l + Zi1lZ j2l + Zi2lZ j1l + Zi2lZ j2l

)
|S
}

= 4
Tmrca

Ttot
+ 2
(Tmrca − Ti

Ttot

)
+ 2
(Tmrca − T j

Ttot

)
− 8
(Tmrca − Ti j

Ttot

)
= 2
(4Ti j − Ti − T j

Ttot

)
, (S3)

where Ti = E{ti1i2} and T j = E{t j1 j2 } at a random SNP l.
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Expected dissimilarities at a random microsatellite in a diploid species

At a microsatellite locus, an allele is coded as the “number of repeats” of a short DNA motif (two to six base

pairs). The mutation process at this genetic variant can be modeled by a symmetric stepwise mechanism

where the number of repeats increases or decreases by 1, with equal probability (Ohta and Kimura, 1973).

We model the genotype Zil of a diploid individual at microsatellite l as the average of the two alleles, Zi1l

and Zi2l. Under the symmetric mutation process,

Zi1l = al +

Ki1 l∑
k=1

Sk, (S4)

where al is the ancestral allele at microsatellite l (the allele carried by the MRCA of all lineages in the sample),

Ki1l denotes the number of mutations that occur on the lineage from haplotype i1 to the MRCA, and the Sks

are independent binary random variables with Pr{Sk = 1} = Pr{Sk = −1} = 1
2 .

Let θl denote the mutation rate at microsatellite l. If we assume that the mutations Sk at marker l occur as a

Poisson process with mutation rate θl, then Ki1l |θl, tmrca ∼ Po(θltmrca) (Hudson, 1990). Thus, we have:

E
{
Z2

i1l |θl

}
= a2

l + E
{
E
{( Ki1 l∑

k=1

Sk

)2
| tmrca

}
|θl

}
= a2

l + E
{
E
{ Ki1 l∑

k=1

S2
k | tmrca

}
|θl

}
= a2

l + E
{
E
{
Ki1l | tmrca

}
|θl

}
= a2

l + E
{
θltmrca |θl

}
= a2

l + θlTmrca. (S5)

(We have used: E{Zi1l} = al +
∑

k Sk = al and E{SkSk′ } = 0 since the Sks have mean 0, variance 1 and are

independent.) Similarly,

E
{
Zi1lZ j1l |θl

}
= a2

l + θl

(
Tmrca − Ti j

)
. (S6)

Now we can combine equations (S5) and (S6) to obtain:

E
{
(Zil − Z jl)2 |θl

}
=
θl

2

(
4Ti j − Ti − T j

)
. (S7)

Compared to equation (S3), there is a factor of 1/4 because we model a diploid genotype at a microsatellite

locus as the average of two alleles rather than the sum of two alleles, as in the case of SNPs.

S2.2 Expected genetic dissimilarities in EEMS

EEMS is based on the stepping stone model (Kimura and Weiss, 1964), which specifies that the expected

coalescence times between two distinct individuals depends only on their locations:

Ti j = Tδ(i)δ( j), (S8)

for individuals i and j drawn randomly from demes δ(i) and δ( j), respectively.

Let D be the matrix of observed genetic differences: D = (Di j) =
(
(Zil − Z jl)2

)
at a randomly selected

polymorphic genetic marker l. If i = j, both the observed and the expected dissimilarity with self is 0. If i , j,

the expected genetic dissimilarity is given by equations (S1), (S3) and (S7):

E{Di j | ∗} =

σ
2Tδ(i)δ( j) at haploid SNP; σ2

(
4Tδ(i)δ( j) − Tδ(i) − Tδ( j)

)
at diploid SNP;

σ2
l Tδ(i)δ( j) at haploid sat. l; σ2

l

(
4Tδ(i)δ( j) − Tδ(i) − Tδ( j)

)
at diploid sat. l;

(S9)
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where the symbol ∗ indicates the event that the site segregates in the sample (if the marker is a SNP) and the

mutation rate θl (if the locus is a microsatellite). The constant of proportionality is 2/Ttot for SNPs and θl/2

for microsatellites, which we write σ2 and σ2
l , respectively. The size of the average sample genealogy Ttot and

the mutation rate θl are not of interest in EEMS.

As a direct consequence of equation (S8), the expected genetic dissimilarity between two distinct individuals

depends only on their locations. That is, EEMS assumes that individuals in the same deme are exchangeable.

EEMS decomposes genetic dissimilarities into between-demes and within-demes components

Consider two different demes α and β. Suppose that individual i is assigned to deme α, which we denote by

δ(i) = α. Similarly, suppose that δ(i∗) = α but i and i∗ are distinct individuals, that δ( j) = β and δ( j∗) = β but j

and j∗ are distinct individuals. [Of course, i and j are distinct because they come from different demes.]

EEMS is a spatially explicit model and it is consistent with the following idea: We can expect that (i, j) are

more dissimilar than either (i, i∗) or ( j, j∗) because i and j come from different locations. However, in general, we

can’t expect (i, i∗) to be as dissimilar as ( j, j∗) as there might be some differences in local genetic diversity. And

to model the genetic dissimilarity due to migration in space we should take into account any local variation

in genetic diversity.

To capture this idea, EEMS approximates the expected coalescence time between two distinct demes α and

β by splitting Tαβ into two components:

Tαβ = Tαβ −
(
Tα + Tβ

)
/2︸                ︷︷                ︸

between demes

+
(
Tα + Tβ

)
/2︸        ︷︷        ︸

within demes

≈ Rαβ/4 +
(
qα + qβ

)
/2, (S10)

where Rαβ is the resistance distance between demes α and β in the undirected, connected population grid, and

qα, qβ are the effective diversity rates at α and β, respectively. In this approximation, resistance distances specify

the expected genetic differentiation between distinct demes in the habitat (the between-demes component),

while the effective diversity rates specify the expected genetic differentiation between distinct individuals

from the same deme (the within-demes component).

EEMS uses the approximation given by equation (S10) to specify a model for the expected genetic dissimi-

larities:

E{Di j | ∗} ≈

σ
2
(
Rδ(i)δ( j)/4 + (qδ(i) + qδ( j))/2

)
, hap/SNP; σ2

(
Rδ(i)δ( j) + (qδ(i) + qδ( j))

)
, dip/SNP;

σ2
l

(
Rδ(i)δ( j)/4 + (qδ(i) + qδ( j))/2

)
, hap/sat. l; σ2

l

(
Rδ(i)δ( j) + (qδ(i) + qδ( j))

)
, dip/sat. l;

(S11a)

∝ Bδ(i)δ( j) + (wδ(i) + wδ( j))/2 in all four cases. (S11b)

In matrix notation E{D | ∗} ∝ ∆ and the constant of proportionality is σ2 for SNPs and σ2
l for microsatellite l.

Furthermore, the expected dissimilarity matrix ∆ has the same form in all four cases, and for the purpose of

generality, we can write

∆ = JBJ′ + 1
2 Jw1′n +

1
2 1nw′J′ −Wn, (S12)

where B = (Bαβ) is the matrix of between-deme dissimilarities, w = (wα) is the vector of within-demes

dissimilarities, J = (Jiα) is an indicator matrix such that Jiα = 1 if individual i comes from deme α, and
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Wn = diag{Jw}. We subtract the diagonal matrix Wn = diag{ 12 Jw1′n+
1
2 1nw′J′} because the expected dissimilarity

matrix ∆ has a main diagonal of 0s. If there are n individuals sampled from o demes, then J ∈ Zn×o, B ∈ Ro×o,

w ∈ Ro. To simplify the notation, we drop the subscripts and write plainly 1 for the vector of 1s. The dimension

will be clear from the context because B is an o × o matrix and ∆ is an n × n matrix.

EEMS models dissimilarities between demes as a function of migration and dissimilarities within demes

as a function of diversity

The within-demes component w characterizes the expected genetic dissimilarity between two distinct indi-

viduals from the same deme and is a function of the effective diversity rates:

wα = g(qα). (S13)

Here q is a vector of effective diversity rates and qα is the element that corresponds to deme α. The function g

is the identity.

The between-demes component B characterizes the expected genetic dissimilarity between two individuals

from distinct demes, after correcting for the local differences in genetic diversity, and is a function of the

effective migration rates:

Bαβ = f (m)αβ. (S14)

Here m is a sparse matrix that represents an undirected, connected, weighted grid, with weights equal to the

effective migration rates between adjacent demes. The function f returns the effective resistance distances

between vertices in the grid, as a dense matrix, and f (m)αβ is the element which corresponds to the pair of

demes α and β.

In EEMS model the parameters of the model are of greater interest than the expected dissimilarities, i.e., m

and q are more interesting than the deterministic functions f (m) and g(q).

S2.3 Computing the Wishart likelihood in EEMS

EEMS represents the population as a connected undirected graph (V,E), with effective migration rates m =

{(α, β) ∈ E : mαβ} and effective diversity rates q = {α ∈ V : qα}. Furthermore, EEMS models the observed genetic

differences D between n individuals, averaged across p SNPs, through a positive definite transformation:

−LDL′ | k,m, q, σ2 ∼Wn−1

(
k,−σ

2

k
L∆(m, q)L′

)
, (S15)

where ∆(m, q) is the matrix of expected genetic dissimilarities as function of the between-demes component

B(m) and the within-demes component w(q). [In Section S2.2, ∆ is given by equation (S12), w by Equation (S13)

and B by Equation (S14).] In addition, L is a (n − 1) × n basis for contrasts on n elements, k is the degrees of

freedom, constrained to lie in the range [n, p], and σ2 is a scale parameter. See Section S2.2 for a demographic

interpretation of σ2.

By definition, a contrast is a linear combination with coefficients that add to zero, so L1 = 0 and

L∆L′ = L
(
JBJ′ + 1

2 Jw1′ + 1
2 1w′J′ −Wn

)
L′ = L

(
JBJ′ −Wn

)
L′. (S16)
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Equation (S16) implies that ∆ and JBJ′ −Wn are equivalent under the Wishart likelihood (S15) because they

give the same likelihood. Therefore, without loss of generality, we can assume that the expected dissimilarity

matrix has the form:

∆ = JBJ′ −Wn, (S17)

where JBJ′ is a block matrix and Wn is a diagonal matrix. We can exploit this structure to compute the Wishart

log likelihood efficiently, without explicitly constructing the n × n matrix ∆. As a result, the computational

cost scales with the grid size, not with the number of samples. The hard-to-compute terms of the Wishart

likelihood (S15) are the determinant and the trace:

tr
{
(L∆L′)−1LDL′

}
= tr
{
∆−1
(
∆L′(L∆L′)−1L

)
D
}
= tr
{
∆−1QD

}
, (S18a)

det
{
− (L∆L′)−1

}
= det

{
− L′(L∆L′)−1L

}
/det

{
LL′
}
= Det

{
− ∆−1Q

}
/det

{
LL′
}
, (S18b)

where det denotes the standard determinant (the product of all eigenvalues), Det denotes the pseudo deter-

minant (the product of the nonzero eigenvalues) and

Q = ∆L′(L∆L′)−1L = I − 1(1′∆−11)−11′∆−1 (S19)

is an orthogonal projection matrix with kernel {1}, the space of constant functions.

The distance matrix ∆ = JBJ′ −Wn is the sum of a block matrix and a diagonal matrix, and its inverse ∆−1

has similar “almost-block” structure:

∆−1 = JXJ′ −W−1
n , (S20)

where X is an unknown o × o matrix. Since ∆∆−1 = I, the solution X must satisfy:

JBCXJ′ −Wn JXJ′ − JBJ′W−1
n +WnW−1

n = I ⇔ J(BC −Wo)XJ′ = JBW−1
o J′, (S21)

where C = J′J = diag{nα} is the diagonal matrix of deme sizes and nα is the number of geo-referenced

individuals assigned to deme α in the population graph. [Demes with nα > 0 are the observed demes.] Since

every term in equation (S21) has exact block structure which depends on the sample configuration through J,

it is sufficient to solve the lower-dimensional problem:(
BC −Wo

)
X = BW−1

o . (S22)

This is a system of linear equations for the unknown matrix X as a function of the between-demes dissimilarities

B, the within-demes dissimilarities Wo = diag{w} and the sample counts C. Equation (S22) can be solved

efficiently without a matrix inversion, by performing the LU factorization of Y = BC −Wo.

We can express the pseudo-determinant Det{−∆−1Q} and the trace tr{∆−1QD} in terms of the auxiliary matrix

X. Using the definition of the orthogonal projection Q in equation (S19) and the properties of the trace,

tr
{
∆−1QD

}
= tr
{
∆−1D

}
− 1

1′∆−11
tr
{
11′∆−1D∆−1

}
. (S23)
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For simplicity of notation, let c = diag{C} and v = (w−1
α ). We consider each term in Equation (S23):

1′∆−11 = 1′
(
JXJ′ −W−1

n

)
1 = c′

(
Xc − v

)
, (S24a)

tr
{
∆−1D

}
= tr
{(

JXJ′ −W−1
n

)
D
}
= tr
{
XJ′DJ

}
, (S24b)

tr
{
11′∆−1D∆−1

}
=
(
c′X′J′ − v′J′

)
D
(
JXc − Jv

)
=
(
Xc − v

)′
J′DJ
(
Xc − v

)
. (S24c)

The matrix product in red, J′DJ, is a known matrix of order o, where o is the number of observed demes, and

it can be precomputed and stored for easy access. Thus we do not need to construct the n × n matrix ∆−1 in

order to compute tr{∆−1QD}; we can work with the o × o matrix X instead. [It follows that the computational

cost scales with the grid size, not with the sample size.]

Next we show how to compute the pseudo determinant Det{−∆−1Q}. Following (Verbyla, 1990), we can

show that

Det
{
− ∆−1Q

}
=

det{LL′}
det{−L∆L′} =

(1′1)/(1′∆−11)
−det{−∆} . (S25)

A distance matrix is conditionally negative definite, and so ∆ has one positive eigenvalue and n − 1 negative

eigenvalues (Bapat and Raghavan, 1997). This guarantees that −det{−∆} is positive and so it is sufficient to

compute |det{∆}| = |JBJ′ −Wn|, which can be obtained from the LU decomposition of Y = BC −Wo:∣∣∣det{∆}
∣∣∣ = ∣∣∣det{Wn}(−1)n−o det{W−1

o BC − I}
∣∣∣ = ∣∣∣det{Wn}det{W−1

o }det{BC −Wo}
∣∣∣. (S26)

We can use Equations (S24), (S25) and (S26) to evaluate the the Wishart likelihood (S15) for the parameters

k,m, q and σ2.

S2.4 Computing resistance distances in an undirected graph

In Section S2.3 the between-demes component B(m) is the matrix of pairwise distances between demes. Various

distance metrics can be considered but, following (McRae, 2006), EEMS uses the metric “effective resistance”

or “resistance distance” R(m).

Let L be the graph Laplacian of the population graph (V,E) with effective migration rates m. (Resistance

distances do not depend on the diversity rates q, so those parameters are not relevant for the following

computation.) The graph Laplacian is given by:

L = D−M, (S27)

where M = (mαβ) is the (sparse) matrix of effective migration rates between connected demes andD = (Dαα)
is the diagonal matrix withDαα =

∑
β:β,αmαβ.

Following (Babić et al., 2002), we can use L to compute the effective resistances R = (Rαβ) for all pairs of

demes in the population graph, by inverting the sum matrix Γ = L + 11′/c where c > 0 is a constant. Let

H = Γ−1 and h = diag{H}. Then

R = 1h′ + h1′ − 2H. (S28)

Importantly, equation (S16) suggests that we can take B = −2H instead of B = R because the matrices −2H

and R produce the same likelihood for the EEMS parameters and are therefore equivalent. In Section S2.3 we

9



use a similar argument to show that ∆ = JBJ′ + 1
2 Jw1′ + 1

2 1w′J′ −Wn and JBJ′ −Wn are equivalent under the

Wishart likelihood (S15). In other words, the likelihood is invariant to adding components with the form 1v′

or v1′ for a vector v.

Furthermore, we can avoid inverting the matrix Γ to obtain the auxiliary matrix X in equation (S20). [Γ is an

d× d matrix where d is the number of demes in the graph; X is an o× o matrix where o is the number of demes

assigned at least one individual.] Let Γo×o be the o× o block that corresponds to the observed demes; similarly,

let Γ(d−o)×(d−o) be the (d − o) × (d − o) block that corresponds to the unobserved demes. Then

H−1
o×o = Γo×o − Γo×(d−o)Γ

−1
(d−o)×(d−o)Γ(d−o)×o, (S29)

which can be computed efficiently by solving a linear system. Finally, the dissimilarities Bo×o between observed

demes can be computed from B−1
o×o = −H−1

o×o/2. If the population graph is sparsely sampled, as is often the case,

it is more efficient to compute the Schur complement of Γo×o in equation (S29), rather than invert the full-size

matrix Γ. This idea is also used in (Hanks and Hooten, 2013).

Computational complexity

The auxiliary matrix Γ is dense, diagonally dominant, positive definite and of order d, where d is the number

of observed demes. First we compute the Schur complement H−11
o×o according to equation (S29), and then the

between-demes dissimilarities Bo×o.

1. Cholesky decomposition Γ(d−o)×(d−o) = U′U: O((d − o)3)

2. Forward substitution U′Y = Γ(d−o)×o: O(o(d − o)2)

3. Backward substitution UX = Y: O(o(d − o)2)

4. Matrix inversion Bo×o = −H−1
o×o/2: O(o3)

This procedure has complexity O((d+ o)(d− o)2 + o3) and, except for very small graphs, it is more efficient than

inverting the sum matrix Γwhich has complexity O(d3).

S2.5 Birth-death Markov Chain Monte Carlo estimation

In Section S2.3 we assume, without loss of generality, that the expected dissimilarity matrix has the form:

∆(m, q) = JB(m)J′ −W(q), (S30)

where B(m) is the between-demes component, which is a function of the migration rates m, and W(q) is the

within-demes component, which is a function the diversity rates q.

EEMS uses two Voronoi tessellations, which independently partition the habitat: one parametrizes the

effective migration rates m, and the other – the effective diversity rates q. Specifically, the migration rates

m are determined by a Voronoi tessellation with Cm cells, seeds s1, . . . , sCm , migration effects e1, . . . , eCm , and

overall migration rate (on the log10 scale) µ, while the diversity rates are determined by another independent

Voronoi tessellation with Cq cells, seeds t1, . . . , tCq , and diversity effects f1, . . . , fCq . The overall diversity rate
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is assumed to be 0 on the log10 scale (1 on the original scale). We fix the overall diversity rate because the

two components of the expected dissimilarity matrix scale so that B(m/2) = 2B(m), W(2q) = 2W(q). With

the current parametrization, fixing the overall diversity rate to 1 makes the scale σ2 identifiable. Finally, the

migration cell effects e1, . . . , eCm , have variance ω2
m, while the diversity cell effects f1, . . . , fCq have variance ω2

q .

We use birth-death Markov Chain Monte Carlo (MCMC) to estimate the number of cells C in each Voronoi

tessellation because the dimension of the seeds and the cell effects changes as C increases or decreases. [The

same procedure is used to update the migration and the diversity Voronoi tessellations, so instead of Cm or Cq

we write C.] In each step, we propose the birth (addition) or death (removal) of a cell, with equal probability

(Stephens, 2000). For a birth proposal, the acceptance probability is

α(Θ,Θ∗) = min
{
1,u

c + r
c + 1

ℓ(Θ∗)
ℓ(Θ)

}
, (S31)

where c is the current number of cells; (r,u) are the parameters of the negative binomial prior on C, Θ is the

current parameter state (with c cells) and Θ∗ is the proposed parameter state, with one additional cell added

at a random location within the habitat and assigned a random effect drawn from a (truncated) normal prior.

Small probability of success u means small acceptance probability α unless the likelihood ratio indicates strong

evidence in favor of adding the new cell.

For a death proposal, one cell is randomly chosen to be removed. There should be at least one cell in the

Voronoi tessellation at each step, so let c + 1 be the current number of cells, i.e., there are at least two cells

currently. The acceptance probability for a death proposal has the form:

α(Θ,Θ∗) = min
{
1,

1
u

c + 1
c + r

ℓ(Θ∗)
ℓ(Θ)

}
. (S32)

For SNP data, the parameter state Θ = (k,m, q, σ2) consists of the degrees of freedom k, the migration rates m,

the diversity rates q and a scale parameter σ2; the likelihood ℓ(Θ) is given by equation (3). For microsatellite

data, the parameter state Θ = (m, q, σ2
1, . . . , σ

2
p) consists of the migration rates m, the diversity rates q and

locus-specific scale parameters σ2
1, . . . , σ

2
p; the likelihood ℓ(Θ) is given by equation (7).

For a given number of Voronoi cells Cm and Cq in the two Voronoi tessellations, the cell effects and their

locations, the overall migration rate µ and (for SNPs data only) the effective degrees of freedom k are each

updated in turn with a random-walk Metropolis-Hastings step:

α(Θ,Θ∗) = min
{
1,

p(Θ∗)
p(Θ)

ℓ(Θ∗)
ℓ(Θ)

}
, (S33)

where p(Θ) is the prior and ℓ(Θ) is the likelihood.

Finally, the scalar variance parameters are ω2
m, ω

2
q , σ

2 for SNP data, and ω2
m, ω

2
q , σ

2
1, . . . , σ

2
p for microsatellite

data. These parameters are updated with a Gibbs step by sampling from the corresponding full conditional

distribution, which is inverse gamma. For example, the variance in relative migration among cells, ω2
m, is

drawn from

ω2
m |C, e1 . . . , eC ∼ Inv-G

(
(cω + C)/2, (dω + SSe)/2

)
, (S34)

where the sum of squares is SSe =
∑C

c=1 ec.
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S3 Visualizing estimated migration rates as a color contour plot

To simplify comparisons, we plot relative migration rates on the same scale throughout the paper; the blue-

and-orange color palette is based a collection of divergent color schemes suitable for people with deficient

red-green vision. As with any contour plot, the choice of color and scaling can affect – sometimes profoundly

– the resulting image and the message it conveys. At the simplest level, a scheme that is too broad will

wash out any differences in effective migration rate between regions, while a scheme that is too narrow may

over-emphasize trivial differences. The color scheme used here, as well as some alternatives, is described in

(Light and Bartlein, 2004) and available at http://geog.uoregon.edu/datagraphics/color_scales.htm.

An estimated effective migration surface is a color contour plot. The accompanying R package rEEMSplots

(http://www.github.com/dipetkov/eems) generates such a plot according to the following procedure:

1. Choose a grid of interpolation points (x, y). These do not correspond to the demes in the population

graph and a dense interpolation grid is required to generate a smooth migration surface.

2. For each Voronoi tessellation drawn from the posterior distribution on the effective migration rates,

compute the rate log10(mxy) at every interpolation point. A Voronoi tessellation partitions the habitat

and each interpolation point is assigned the migration rate log10(mc) of the cell c that it falls into.

3. Standardize the migration rates so that the mean over the interpolation points is 0.

The Voronoi cells do not necessarily have the same area and so may contain a different number of interpolation

points. Therefore, the unweighted average over the interpolation points corresponds to a weighted average

across the Voronoi cells, with weights proportional to the area of each cell. With the normalization described

above, the “average color” across the color contour plot is white.

S4 Details about four empirical datasets analyzed with EEMS

EEMS is a general method for visualizing spatial population structure and it might be appropriate to apply

quality control steps that are customary in population structure analyses, such as pruning SNPs because of

long-range LD or high missingness. Measures for SNP and sample quality control have been applied to each

of the empirical datasets analyzed here.

Elephant data. The African elephant dataset is collected and genotyped as part of a large collaborative

study to develop assignment methods for determining the geographic origin of elephant samples from across

Sub-Saharan Africa (Wasser et al., 2004). Samples from both forest and savanna elephants have been collected

and genotyped at 16 microsatellite loci. Although the two subspecies can be accurately discriminated using the

16 microsatellites, there is observational and genetic evidence that forest and savanna elephants can hybridize

(Wasser et al., 2004). We analyzed the geo-referenced data from (Wasser et al., 2015), which excludes putative

hybrids (samples with posterior probability of being hybrid greater than 0.01) and consists of 211 forest and

913 savanna elephants, from 75 distinct locations in 28 countries in Sub-Saharan Africa. The microsatellite data

and sample locations are available on the Dryad Digital Repository (http://dx.doi.org/10.5061/dryad.435p4).
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Human European and African data. The European dataset was collected and genotyped as part of the

POPRES (Population Reference Sample) project (Nelson et al., 2008) and can be accessed at https://www.ebi.

ac.uk/ega/studies/phs000145.v2.p2. We used a focal subset of 197,146 autosomal SNPs and 1,379 individuals

analyzed in a previous publication (Novembre et al., 2008), with the individual IDs and marker list available

from https://github.com/NovembreLab/Novembre_etal_2008_misc. We analyzed a subset of 1,201 individuals

from 13 Western European countries: Austria (AT), Belgium (BE), Denmark (DK), France (FR), Germany (DE),

Ireland (IE), Italy (IT), Netherlands (NL), Portugal (PT), Scotland (Sct), Spain (ES), Switzerland (CH), United

Kingdom (UK). The samples from Switzerland (CH) are split into three subpopulations: French, Italian and

German speaking Swiss, coded as CHf, CHi and CHg, respectively. We removed five samples from Italy

(7623, 33242, 34049, 38532, 49500) that project outside the main Italian cluster in PC1-PC2 space and therefore

are identified as possible outliers in (Novembre et al., 2008). [For example, these samples might have insular

Italian ancestry – Sardinian or Sicilian.] The resulting dataset is described in Section S7.

The African dataset was compiled from a subset of two published SNP array datasets: one presented in (Xing

et al., 2010) and available from http://jorde-lab.genetics.utah.edu/?page_id=23 and the other presented in

(Henn et al., 2011) and available from http://www-evo.stanford.edu/repository/. From the Xing et al. dataset

we extracted the populations: Alur (Al), Bambaran (Ba1), Dogon (Do), Hema (He), Nguni (Ng), Pedi (Pe) and

Sotho/Tswana (ST); from the Henn et al. dataset we extracted all samples from the populations: Bamoun (Ba2),

Brong (Br), Bulala (Bu), Fang (Fa), Hausa (Ha), Igbo (Ig), Kaba (Ka), Kongo (Ko), Mada (Ma2), Mandenka

(Ma3) and Xhosa (Xh) and as well as the Yoruba (Yo) samples in the Human Genetic Diversity Project (HGDP)

and the Luhya (Lu) and Maasai (Ma1) samples in the HAP1117 subset of HapMap phase 3 (Pemberton et al.,

2010). The two subsets were merged at SNPs that have been genotyped in both datasets. From the merged

dataset, we then removed SNPs with more than 5% missingness per marker and samples with more than 5%

missingness per individual, as well as two Hema individuals that are classified as likely relatives and outliers

in most analyses of Sub-Saharan samples in (Wang et al., 2012). After these exclusions, we analyzed a dataset

composed of 314 samples from 21 Sub-Saharan populations genotyped at 27,825 polymorphic SNPs. The

resulting dataset in described in Section S7.

Arabidopsis thaliana data. The Arabidopsis thaliana dataset was collected and genotyped as part of the

RegMap (Regional Mapping) project (Horton et al., 2012) and is available at http://bergelson.uchicago.edu/

regmap-data/. We downloaded unimputed SNP genotypes for 1,193 samples with high-quality geographic

coordinates (latitude and longitude), categorized into twelve geographic regions. From these we analyzed

1,160 accessions from North America and Europe, genotyped at 214,051 SNPs using the Affymetrix Arabidopsis

250K SNP chip (Horton et al., 2012). These include 180 accessions from the region Americas and 979 accessions

from the (European) regions British-Isles, Fennoscandia, France, Iberia, North-West Europe, South-Central and

Austria-Hungary. We excluded three accessions (Yo-0, Van-0, Buckhorn Pass) from the western coast of North

America because the rest are collected from the eastern and central United States, as well as one accession

(Can-0) because it is collected from Spain’s Canary Islands and one accession (Da(1)-12) from the Czech

Republic because its exact latitude/longitude coordinates are missing.
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S5 Additional simulations under the stepping stone model
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Supplementary Figure 1 Geographic bias in SNP ascertainment can affect EEMS inference about effective

migration and diversity. As (McVean, 2009) points out, two samples are involved in SNP ascertainment: first

a panel to discover SNPs for genotyping on a microchip and then a sample to genotype and analyze. The

ascertainment is biased if the discovery panel is not representative of the genetic variation in the population.

Here we illustrate SNP ascertainment with geographic bias under a barrier to migration scenario. We simulated

n = n0+n1 individuals, of which n0 are designated discovery panel (red crosses) and n1 = 300 are designated geo-

referenced sample (black circles). The SNP ascertainment is geographically biased because the discovery panel

is preferentially sampled from the right than from the left of the barrier. (a) Estimated effective migration rates

on the same log10 scale indicated by the color bar. (b) Estimated effective diversity rates, also on a common

log10 scale. In these simulations, panel B has a stronger geographic bias than panel A and the ascertainment

bias affects the diversity estimates more than the migration estimates. In panel B, the effective diversity is

highest in the region where most of the discovery panel is sampled from, on the right of the barrier. Intuitively,

after ascertainment, it is more likely to “discover” mutations that have arisen in the discovery region, which has

increased effective diversity as a result.
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N-E scale barrier uniform

x = 4

x = 8

Supplementary Figure 2 Migration directionality can affect EEMS inference about effective migration. EEMS

assumes that migration is undirected and that migration rates are locally similar; both assumptions can be

violated in practice. For a straightforward simulation of directed migration, we used two datasets analyzed in

Figure 2 and we multiplied the latitude (vertical) coordinate of every sampling location by a fixed factor x. Thus

N-S migration is x times as fast as E-W migration. (Equivalently, under the coalescent, a lineage can travel x

times as far in the N-S direction than in the E-W direction, in the same amount of time.) We vary both the N-S

scale factor: x = 4 in the top row, x = 8 in the bottom row; and the underlying true migration scenario: a barrier

to migration in the left column, uniform migration in the right column. EEMS is not well suited to modeling

migration directionality; nevertheless, it attempts to explain the spatial patterns in genetic dissimilarities by

inferring vertical N-S barriers which effectively “slow down” migration in the E-W direction.
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(a)

(b)

Supplementary Figure 3 Lack of fit due to recent migrants or incorrect geographic labels. In (a) 21 individuals

from the top right corner are incorrectly assigned to the bottom left corner, as indicated by the the red arrows.

The small region of low effective migration in the bottom left creates a barrier around these “migrants”, captur-

ing the fact that they are genetically distinct from other nearby individuals. Effectively, the “recipient” deme is

isolated from its neighbors. At the same time, the “migrants” are genetically similar to the distant individuals

in the top right corner but this spatial pattern is not represented in the estimated effective migration surface.

(b) Indeed EEMS considerably overestimates the corresponding expected dissimilarities; the lack of fit is high-

lighted by the outliers in the diagnostic between-demes scatter plot. The diagnostic scatter plot is generated

automatically by the EEMS software, by plotting the pairwise genetic differences predicted by the fitted model

against the pairwise genetic differences observed in the data.
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(a) Sampling configuration on the true 12 × 8 population grid.

(b) Estimated effective migration rates on 13 × 7, 15 × 8 and 17 × 9 grids.

(c) Estimated effective migration rates, averaged over the 13 × 7, 15 × 8 and 17 × 9 grids.

Supplementary Figure 4 The vertices V and the edges E in the population grid are specified as inputs to the

EEMS program and are fixed during estimation; the choice for V and E can affect the inferred migration rates.

For example, a very coarse grid might not allow for sufficient variation in resistance distances. Therefore, we

recommend averaging the surfaces estimated with grids of different sizes. In practice this will moderate the

discretization implicit in assigning the samples collected in a continuous habitat to the vertices of a discrete

population graph. Here we use the barrier-to-migration simulation in Figure 2 for illustration. (a) The data is

simulated on a 12×8 grid. (b)We use 13×7, 15×8 and 17×9 grids to estimate effective migration rates. As the

grid dimensions change, so do the occupied demes because samples are assigned to the closest deme in the

grid; small details in the estimated surfaces change as well. (c) After averaging the estimated migration rates

over grids of two different sizes, the broad features remain the same.
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(a)

(b)

(c)

(d)

Figure A past demographic event can produce a barrier to effective migration. (a) An ancestral population

splits into two subpopulations, E in the east and W in the west, after the migration rates in the central region

drop simultaneously to 0. This event, which occurs x units of time in the past, creates an “effective barrier” to

migration. The further back in time the split event occurs, the more differentiated subpopulations E and W are.

The split occurs at (b) x = 1; (c) x = 4; (d) x = 9 units of time in the past; x is measured in N0 generations.

Before the split, migration rates are all set to 1 (on the same coalescent scale N0); after the split, migration rates

on either side of the central region remain 1.
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S6 Additional analysis of African elephant population structure
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Supplementary Figure 5 Effective migration rates for the African elephant at sixteen microsatellite loci ana-

lyzed separately. The loci are highly polymorphic and therefore informative for the sample genealogy at each

site as every mutation on the genealogy contains information about the branch lengths in the tree. (Longer

branches are more likely to carry a mutation, if the mutation rate is constant in time.) The sixth locus is ex-

tremely informative, presumably because it has the highest mutation rate, and it successfully captures the

strong effective barrier to migration between the habitat ranges of forest and savanna elephants.
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(a)

(b)

Supplementary Figure 6 Further EEMS analysis of the population structure of the African elephant data from

(Wasser et al., 2015). According to the categorization in (Wasser et al., 2004), forest elephants come from

two regions: West (W) and Central (C); savanna elephants come from three regions: North (N), East (E) and

South (S). (a) Estimated effective migration surface, after excluding the most variable locus – the sixth locus

in Supplementary Figure 5. The inferred surface, which does not change qualitatively after removing that

locus, separates the two subspecies of African elephants, forest and savanna. (b) Estimated effective diversity

rates using all sixteen loci. Forest elephants have higher effective diversity than savanna elephants. This

is consistent with previous analysis which indicates that forest elephants have higher average heterozygosity

(Comstock et al., 2002).
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(d)

Supplementary Figure 7 Principal component analysis (PCA) of the African elephant data. (a) Original sam-

pling locations in Sub-Saharan Africa. According to the categorization in (Wasser et al., 2004), the forest elephant

subspecies inhabits the West and Central regions (in shades of green); the savanna elephant subspecies inhabits

the North, East and South regions (in shades of orange). (b-d) First and second principal components of genetic

variation, and the proportion of variance explained (PVE) as a percentage. (b) PCA of 211 forest elephants. (c)

PCA of 914 savanna elephants. (d) PCA of 1124 African elephants, both forest and savanna.
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(a)

(b)

Supplementary Figure 8 GENELAND analysis of the African elephant data. GENELAND (Guillot et al., 2005) is a

cluster-based method which uses Voronoi tessellations to encourage spatially continuous clusters and find sharp

boundaries between genetically differentiated groups. (a) Posterior probabilities for belonging to each of two

inferred clusters, which correspond to the forest and savanna habitats. (b) Posterior probabilities for belonging

to each of five inferred clusters, which correspond roughly to the five biogeographic regions defined in (Wasser

et al., 2004): “North”, “South”, “East”, “West” and “Central”. GENELAND successfully detects differences in

allele frequencies between the two subspecies and the five biogeographic regions. However, GENELAND does

not model the relationships between the regions: the five clusters in (b) are as distinct from each other as the

two clusters in (a), even though the “West” and “Central” clusters are inhabited by forest elephants while the

“North”, “East” and “South” clusters – by savanna elephants.
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(a)

(b)

Supplementary Figure 9 STRUCTURE analysis of the African elephant data. (a) Membership proportions for

belonging to five inferred clusters. (b) Membership proportions for belonging to six inferred clusters. Individuals

are ordered by sampling location and the five biogeographic regions and separated by black vertical lines; the

ancestral populations of forest and savanna elephants are colored in green and brown hues, respectively. Unlike

GENELAND (Guillot et al., 2005), STRUCTURE (Pritchard et al., 2000) with a sampling location prior (Hubisz

et al., 2009) provides intuition for the relationship between the five biogeographic regions. STRUCTURE clearly

detects the difference between forest elephants (West and Central regions) and savanna elephants (North,

East and South regions) as they fall into different clusters. Furthermore, STRUCTURE shows some evidence

for isolation by distance, particularly in savanna elephants, as most of these individuals are represented as

weighted mixtures of ancestral clusters that do not correspond to distinct geographic areas.
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(a) (b)

(c)

Supplementary Figure 10 Observed vs fitted genetic dissimilarities, between and within demes, for the African

elephants. The observed genetic dissimilarities between individuals, Di j, are summarized according to the

deme assignment: Dαβ = 1
nαβ

∑
δ(i)=α,δ( j)=β,i, j Di j where nαβ is the number of pairs (i, j) such that sample i is

assigned to deme α, sample j is assigned to deme β and i, j are distinct individuals. Singleton demes (those

assigned one sample) are excluded from both scatter plots. (a) Dissimilarities between demes. The values

Bαβ = ∆αβ − (∆αα +∆ββ)/2 comprise the between-demes component of genetic dissimilarity, B, which is modeled

by the effective migration rates m (equation S14). (b) Dissimilarities within demes. The values Wα = ∆αα

comprise the within-demes component of genetic dissimilarity, W, which is modeled by the effective diversity

rates q (equation S13). If the EEMS model fits the data well, we expect a strong linear relationship between

the observed and fitted values in both scatter plots. (c) Genetic dissimilarities against geographic distances

between demes. Under isolation by distance (IBD), we expect a strong linear relationship between genetic

dissimilarity and geographic distance. The African elephant violates exact IBD because forest and savanna

elephants are strongly differentiated even though their habitats meet in the hybrid zone in Central Africa.
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S7 Additional analysis of human population structure in Europe and

Africa
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Population Symbol Size Comment about sample exclusions

Austria AT 14

Belgium BE 43

Denmark DK 1

France FR 89

Germany DE 71

Ireland IE 61

Italy IT 214(219) Removed 7623, 33242, 34049, 38532, 49500 as PCA outliers.

Netherlands NL 17

Portugal PT 128

Scotland Sct 5

Spain ES 136

Swiss-French CHf 125

Swiss-German CHg 84

Swiss-Italian CHi 13

United Kingdom UK 200

Table Description of the Western Europe dataset, which is a subset of POPRES data analyzed in (Novembre

et al., 2008). It comprises 15 populations from 13 countries; their names and abbreviations, which generally

correspond to ISO country codes, are given in the first and second column. The samples from Switzerland (CH)

are split into three subpopulations: French, Italian and German speaking Swiss, coded as CHf, CHi and CHg,

respectively. The number of samples from each population are given in the third column. We excluded five

individuals as possible outliers based on their position in PC1-PC2 space: they project outside of the main Italian

cluster and thus might have insular Italian ancestry – Sardinian or Sicilian (Novembre et al., 2008).
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Population Symbol Size Dataset Comment about sample exclusions

Alur Al 10 (Xing et al., 2010)

Bambaran Ba1 25 (Xing et al., 2010)

Bamoun Ba2 18 (Henn et al., 2011)

Brong Br 7 (8) (Henn et al., 2011) Removed 3572B (missingness > 5%).

Bulala Bu 15 (Henn et al., 2011)

Dogon Do 24 (Xing et al., 2010)

Fang Fa 15 (Henn et al., 2011)

Hausa Ha 11 (12) (Henn et al., 2011) Removed NGHA019 (missingness > 5%).

Hema He 13 (15) (Henn et al., 2011) Removed AFH7, AFH10 as PCA outliers.‡

Igbo Ig 13 (15) (Henn et al., 2011) Removed NGIB007 and NGIB004 (missingness > 5%).

Kaba Ka 17 (Henn et al., 2011)

Kongo Ko 9 (Henn et al., 2011)

Luhya Lu 23 (25) (Henn et al., 2011) Removed NA19027, NA19046 (not in HAP1117).†

Maasai Ma1 21 (30) (Henn et al., 2011) Removed NA21528, NA21634, NA21447, NA21384,

NA21382, NA21576, NA21616, NA21435, NA21405

(not in HAP1117).†

Mada Ma2 12 (Henn et al., 2011)

Mandenka Ma3 22 (Henn et al., 2011)

Nguni Ng 9 (Xing et al., 2010)

Pedi Pe 10 (Xing et al., 2010)

Sotho/Tswana ST 8 (Xing et al., 2010)

Xhosa Xh 11 (Henn et al., 2011)

Yoruba Yo 21 (Henn et al., 2011) Samples also in the Human Genetic Diversity Project.

Table Description of the Sub-Saharan Africa dataset, which combines data from (Xing et al., 2010) and (Henn

et al., 2011). It comprises 21 ethnic groups (their names and abbreviations are given in the first and second

column). The number of samples from each population are given in the third column and the source dataset

in the fourth column. We excluded some samples because of issues with genotype quality or close familial

relatedness. The final column indicates the excluded samples and the reason for exclusion. † The HAP1117

subset of HapMap3 excludes first- and second-degree relationships (Pemberton et al., 2010). ‡ These two Hema

individuals – AFH7 and AFH10 – are classified as likely relatives and outliers in the analysis of Sub-Saharan Africa

reported in (Wang et al., 2012).
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(d)

Figure Principal component analysis of humans in Western Europe and Sub-Saharan Africa. (a) We analyze

1201 individuals from 15 Western European populations. The data is part of the POPRES (Population Reference

Sample) project (Nelson et al., 2008). The populations and their abbreviations are given in the legend on the

right. The sampling is uneven and the size of the symbol indicates the relative number of individuals from

each population. Colors are assigned according to latitude and longitude. (b) The first and second principle

components are strongly correlated with latitude and longitude, as reported in (Novembre et al., 2008), and

explain 0.3% and 0.15% of the individual genetic variation, respectively. (c) We analyze 314 individuals from

21 Sub-Saharan ethnic groups. The data is a compilation of two published SNP array datasets described in

(Xing et al., 2010) and (Henn et al., 2011). Again, the symbols and colors are assigned according to geographic

location and sample size. (d) The first and second principle components are strongly correlated with longitude

and latitude, as reported in (Wang et al., 2012), and explain 1.3% and 0.8% of the individual genetic variation,

respectively.

30



500 1000 1500 2000

0.000

0.001

0.002

0.003

0.004

0.005

Geographic distance (km)

G
en

et
ic

 d
is

si
m

ila
rit

y 
(F

S
T
)

●
●

●●●
●

●

●

●
●

●●

●●

●

●
●

●

●

●

●

●●●
●

●
● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

South / South
North / North
South / North

(a)

0 1000 2000 3000 4000 5000 6000

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Geographic distance (km)

G
en

et
ic

 d
is

si
m

ila
rit

y 
(F

S
T
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

Coast / Coast
Inland / Inland
Coast / Inland

(b)

Supplementary Figure 11 Genetic dissimilarity (FST) as a function of geographic (great circle) distance, for

pairs of human populations in Western Europe and Sub-Saharan Africa. On both continents, genetic differentia-

tion increases with distance and this suggests that spatial variation is consistent with isolation by distance. The

colors are chosen to emphasize comparisons between two groups of populations. (a) In Western Europe, the

“south” group consists of Portugal (PT), Spain (ES), Italy (IT); the “north” group consists of Ireland (IE), Scotland

(Sct), United Kingdom (UK), Holland (NL). Comparisons within the “south” and “north” groups are colored red and

blue, respectively; comparisons between the two groups are colored purple. There is greater similarity within

each group than between the groups. (b) In Sub-Saharan Africa, the “coast” group consists of Brong (Br), Yoruba

(Yo), Igbo (Ig), Bamoun (Ba2), Fang (Fa), Kongo (Ko); the “inland” group consists of Hausa (Ha), Mada (Ma2), Bu-

lala (Bu), Kaba (Ka), Hema (He). Coastal populations are more similar genetically than inland populations, even

though some coastal populations are further apart.
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(a)

(b)

Figure EEMS analysis of the spatial structure of genetic variation in Western European, using data from the

POPRES project (Nelson et al., 2008). EEMS estimates both the effective diversity rates within demes and the

effective migration rates between connected demes. The fitted diversity rates can be interpolated across the

habitat to produce an “estimated effective diversity surface”, which is complementary to the “estimated effec-

tive migration surface”. (a) Effective migration rates. This contour plot highlights effective barriers to migration

in the north-south direction. (b) Effective diversity rates. This contour plot highlights the previously noted

north-south gradient in human genetic diversity in Europe (Lao et al., 2008; Auton et al., 2009).
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Supplementary Figure 12 Observed versus fitted dissimilarities between the 14 Western European popula-

tions. (We excluded Denmark (DK) because it has a single sampled individual.) EEMS attempts to estimate the

effective migration and diversity rates so that the fitted genetic distances closely match the observed genetic

differences; therefore, for a specific population grid, the coefficient of determination, r2, between the fitted and

observed values indicates the goodness-of-fit. For the results presented here we used a 19 × 15 grid. (a) Dis-

similarities are modeled under the assumption of uniform migration, a setting which simulates exact isolation by

distance (r2 = 0.142). (b) Dissimilarities are modeled with EEMS, which estimates both the effective migration

rates and the effective diversity rates, assuming equilibrium in time (r2 = 0.978). Genetic dissimilarities can be

further decomposed into a between-demes and a within-demes component, and the fitted and observed values

in each component are plotted in (c) for IBD and (d) for EEMS. These two diagnostic plots are automatically

generated by the EEMS software, to help assess the EEMS model fit.
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(a)

(b) (c)

Supplementary Figure 13 Robustness of estimated effective migration rates to unbiased location uncertainty,

using data from the POPRES project (Nelson et al., 2008). In this dataset geographic information is imprecise:

except for Switzerland, nationals from the same country are assigned to the central point of its area. Swiss

individuals are categorized into Swiss-German, Swiss-French and Swiss-Italian, and assigned to three different

locations within Switzerland. (a) Effective migration surface with the original assigned coordinates, indicated in

green. (b,c) Effective migration surface after adding an unbiased random error to the assigned location of each

individual. The “jittered” coordinates are in black, the original coordinates in green. The effective migration

surface is robust to small unbiased location errors, except in sparsely sampled geographic regions. In this case,

the effective migration estimates vary the most in the top right corner where there is a single individual from

Denmark.
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(a)

(b)

Figure EEMS analysis of 314 individuals from 21 Sub-Saharan African ethnic groups: Alur (Al), Bambaran (Ba1),

Bamoun (Ba2), Brong (Br), Bulala (Bu), Dogon (Do), Fang (Fa), Hausa (Ha), Hema (He), Igbo (Ig), Kaba (Ka),

Kongo (Ko), Luhya (Lu), Maasai (Ma1), Mada (Ma2), Mandenka (Ma3), Nguni (Ng), Pedi (Pe), Sotho/Tswana (ST),

Xhosa (Xh), Yoruba (Yo). The Luhya and Xhosa populations, highlighted in green, are recent geographic migrants

(Henn et al., 2011). We remove these two populations and re-analyze the Sub-Saharan data in Supplementary

Figure 14. (a) Effective migration rates. This contour plot emphasizes that effective migration is higher along

the Atlantic coast that it is inland. (b) Effective diversity rates. This contour plot emphasizes that effective

diversity is higher in East Africa than it is in South or West Africa.
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(a)

(b)

Supplementary Figure 14 EEMS analysis of the spatial structure in 19 Sub-Saharan African populations, after

excluding the Luhya (Lu) and the Xhosa (Xh), two Bantu speaking populations considered recent geographic mi-

grants in (Henn et al., 2011). EEMS approximates a spatial demographic model which evolves under equilibrium

in time and recent migration deviates from this assumption. The other Bantu speaking populations are Pedi (Pe),

Sotho/Tswana (ST) and Nguni (Ng) in the south and Fang (Fa) and Kongo (Ko) in the west. (a) Effective migration

rates. (b) Effective diversity rates.
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Supplementary Figure 15 Geographic distances and genetic dissimilarities between a recent migrant popula-

tion (the Luhya, who speak a Bantu language) and 20 other ethnic groups in Sub-Saharan Africa. (a) The popula-

tions highlighted in red speak Bantu languages, the populations highlighted in blue speak Nilotic languages. The

population names are given in the table on page 29. (b) Observed genetic dissimilarity vs geographic distance

between one Bantu speaking population – the Luhya (Lu) in the east – and each of the other 20 ethnic groups in

the Sub-Saharan Africa dataset. The Luhya are geographically close to the other ethnic groups in the east but

are genetically distinct from the Hema (He) and the Maasai (Ma1). The Luhya are recent geographic migrants

(Henn et al., 2011), which could explain the difference between the EEMS in Section S7, which includes the

Luhya, and the EEMS in Supplementary Figure 14, which excludes the Luhya.
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Supplementary Figure 16 Observed versus fitted dissimilarities between 21 Sub-Saharan ethnic groups. EEMS

attempts to estimate the effective migration and diversity rates so that the fitted genetic distances closely match

the observed genetic differences; therefore, for a specific population grid, the coefficient of determination, r2,

between the fitted and observed values indicates the goodness-of-fit. For the results presented here we used a

19×17 grid. (a) Dissimilarities are modeled under the assumption of uniformmigration, a setting which simulates

exact isolation by distance (r2 = 0.164). (b) Dissimilarities are modeled with EEMS, which estimates both the

effective migration rates and the effective diversity rates, assuming equilibrium in time (r2 = 0.914). Genetic

dissimilarities can be further decomposed into a between-demes and a within-demes component, and the fitted

and observed values in each component are plotted in (c) for IBD and (d) for EEMS. These two diagnostic plots

are automatically generated by the EEMS software, to help assess the EEMS model fit.
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S8 Additional analysis of A. thaliana population structure
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(a)

(b)

Figure EEMS analysis of 979 Arabidopsis thaliana accessions collected in Europe; geo-referenced data from the

RegMap project (Horton et al., 2012). (a) Effective migration surface. (b) Effective diversity surface. There

is less variation in effective migration and effective diversity is higher across the core natural range in Central

Europe. Effective diversity tends to decrease in coastal regions and at the boundaries of the sampled habitat.
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(c)

Supplementary Figure 17 Principal component analysis (PCA) of Arabidopsis thaliana in Europe. (a) Original

sampling locations (left) and PCA projections (right). In both panels colors are assigned according to collection

area, after grouping some neighboring countries together for clarity of presentation. (b) Original sampling

locations (left) and PCA projections (right) of accessions collected in France. Colors are assigned according to

latitude and longitude in order to emphasize the separation of NW samples from SE samples. The PCA plot

shows the same projections as those in (a) but for the France subset of the accessions. (c) Original sampling

locations (left) and PCA projections (right) of accessions collected in Central Europe and South Sweden. Colors

are assigned according to latitude and longitude, using an altered rule, in order to emphasize a different spatial

pattern.
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