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Supplementary Tables
Table S1 Detailed description of the 135 wheat parental lines for grain yield (GY, Mg ha™),
1000-kernel weight (TKW, g), gluten content (GC, %), kernel hardness (KH), protein content
(PC, %), sedimentation volume (SV), starch content (SC, %), test weight (TW, g), brown rust
severity (BR, scale 1-9), Fusarium head blight severity (FH, scale 1-9), powdery mildew

severity (PM, scale 1-9), Septoria tritici blotch severity (ST, scale 1-9), and yellow rust
severity (YR, %), frost tolerance (FT, scale 1-9).

Genotype Code LP' GCA> TKW GC KH PC SV SC TW BR FH PM ST YR FT
WS-001  FOOI 100 020 449 263 468 120 440 673 761 14 37 27 42 97 72
KWS-002 F002 95 -0.11 444 280 51.1 126 528 686 762 20 32 30 39 70 72
KWS-003 F003  10.1 0.9 459 256 535 119 462 687 769 3.0 40 21 27 64 53
KWS-004 TF004 98 -022 418 250 397 118 360 694 775 09 43 30 53 311 67
KWS-005  F005 93 018 488 280 551 127 559 689 792 41 46 27 41 129 38
KWS-006 F006 105 029 450 246 456 116 371 688 736 05 56 18 54 157 7.1
KWS-007 F007 98 007 465 271 539 122 342 682 759 44 50 32 59 65 68
KWS-008 F008 9.6 002 423 259 615 120 309 687 728 32 47 28 54 93 71
KWS-009 F009 97  -0.09 427 268 402 122 327 670 745 16 49 24 33 68 66
KWS-010 FOI0 95 -001 402 286 493 125 512 668 756 17 39 15 42 102 70
KWS-011  Fo11 97 005 443 286 371 126 523 664 767 13 46 24 46 101 74
KWS-012 F0I2 98 034 438 260 475 118 282 691 719 20 41 20 45 77 69
KWS-013  F013 94 000 420 275 382 127 366 693 755 09 51 20 53 280 69
KWS-014 TF0l4 97 011 395 256 425 120 336 688 737 13 44 21 39 240 6.1
KWS-015  F015 93 010 460 274 435 124 405 664 748 33 36 15 48 65 47
KWS-016 FOl6 99 007 413 275 421 122 381 681 760 45 53 15 48 82 63
KWS-017 FO17 95 -008 436 271 237 122 438 694 768 23 43 21 41 65 62
KWS-018 TFOI8 9.1  -0.18 447 288 409 127 402 673 724 41 50 14 48 70 69
KWS-019  F019 84  -051 498 332 442 140 587 671 780 27 34 33 51 84 17
KWS-020 F020 104 025 456 292 399 125 482 676 746 24 49 38 31 98 39
KWS-021  F021 96 -0.16 468 277 295 130 458 677 775 15 43 39 56 82 6.1
KWS-022 F022 97 017 423 269 379 122 419 686 755 11 43 18 39 203 5.7
KWS-023  F023 93 004 433 296 506 130 567 683 780 18 58 35 35 65 57
KWS-024 TF024 99 000 490 275 574 122 349 682 775 17 39 39 38 78 82
KWS-025  F025 96 004 454 263 208 123 354 680 739 19 39 31 29 67 178
KWS-026 F026 97  -0.03 421 285 343 131 466 685 762 09 53 19 45 99 76
NOS-001  F027 9.0 -038 441 263 447 126 384 683 729 44 51 16 51 50 68
NOS-002 F028 9.7 -0.10 419 257 373 119 310 684 730 10 55 19 40 69 35
NOS-003 F029 9.4 -007 423 319 517 136 541 664 732 10 59 20 27 200 65
NOS-004 F030 94  -002 453 278 519 126 476 681 748 33 43 29 51 176 46
NOS-005  F031 93 025 418 284 456 130 521 668 744 21 42 19 33 478 13
NOS-006 F032 100 007 432 277 579 124 531 680 719 52 53 19 55 100 6.7
NOS-007  F033 94 011 458 284 328 128 437 685 742 23 41 19 51 104 72
NOS-008 F034 94 000 418 299 382 130 376 665 766 48 42 43 42 98 50
NOS-009 F035 94  -0.11 501 313 453 134 581 665 770 25 49 29 44 64 54
NOS-010 F036 95 -0.17 398 271 383 126 494 675 750 13 43 21 52 217 54
NOS-011  F037 9.7 009 466 274 560 122 460 687 751 21 38 30 41 66 68



Genotype  Code LP' GCA* TKW GC KH PC SV SC TW BR FH PM ST YR FT
NOS-012  F038 83 -0.15 457 291 496 132 490 683 756 37 42 20 64 53 63
NOS-013  F039  10.1 0.5 427 279 542 123 450 681 769 14 32 12 40 51 28
NOS-014  F040 93  -023 413 265 352 119 370 680 730 1.0 47 30 62 66 49
NOS-015  F041 100 015 411 270 551 11.8 405 694 758 32 37 24 34 67 39
NOS-016  F042 9.7 004 433 269 474 121 301 674 765 1.0 31 13 38 161 52
NOS-017  F043 9.6 -0.11 518 262 403 119 366 689 725 14 51 25 60 49 47
NOS-018  F044  10.0 020 443 290 492 127 506 682 765 13 37 26 54 68 44
NOS-019  F045 95 006 430 259 451 119 447 684 772 26 32 34 40 68 56
NOS-020  F046  10.0 0.08 452 267 368 121 307 681 754 15 47 13 24 67 28
NOS-021  F047 99 004 456 256 561 117 413 689 752 13 34 23 25 50 50
NOS-022  F048 9.6 -034 463 285 327 128 390 678 751 1.5 44 22 39 66 3.0
NOS-023  F049 97 002 419 262 359 119 454 689 766 1.7 35 22 45 47 24
NOS-024  F050 9.6 000 458 281 465 123 432 674 752 31 36 31 38 103 3.4
NOS-025  F051 94 024 474 264 349 123 380 690 747 13 49 26 46 68 46
NOS-026  F052 9.7 -0.12 394 302 445 129 385 671 781 14 38 18 27 67 3.6
NOS-027  F053 92 024 424 286 442 130 495 674 740 19 42 17 47 80 42
NOS-028  F054 89 030 411 278 454 13.0 447 674 768 1.7 30 23 35 65 13
NOS-029  F055 88 -040 400 303 396 135 461 675 761 24 37 15 42 51 40
NOS-030  F056 9.1 -0.10 451 250 523 116 447 693 783 22 52 20 45 67 57
NOS-031  F057 9.6 -0.07 463 257 498 120 490 692 759 22 45 23 57 241 76
NOS-032  F058 9.9  -0.03 433 277 437 124 425 677 749 38 40 22 48 102 59
NOS-033  F059 99 002 456 291 483 127 492 682 764 1.1 46 17 29 344 62
NOS-034  F060 103 027 457 273 476 122 516 696 771 26 39 21 25 83 56
NOS-035  F061 101 014 389 263 60.1 120 450 692 797 35 30 27 33 86 3.6
NOS-036  F062 9.7 013 437 291 472 129 497 672 792 40 34 17 38 122 1.7
NOS-037  F063 93 022 457 283 495 129 570 687 777 22 39 25 50 86 32
NOS-038  F064 9.9 006 446 262 51.0 121 419 682 778 32 33 24 42 64 3.0
NOS-039  F065 104 0.9 483 270 489 123 390 687 769 24 38 30 27 107 55
NOS-040  F066 9.7 005 414 285 594 125 51.6 685 747 29 41 21 33 49 66
NOS-041  F067 103 0.6 488 277 452 122 336 670 738 50 39 15 42 65 3.5
NOS-042  F068 93 000 428 264 444 119 358 668 66.6 22 65 13 27 43 45
NOS-043  F069 93 014 408 279 540 126 467 683 775 38 46 46 34 77 35
NOS-044  F070 9.9 001 427 283 503 125 384 665 705 12 57 19 34 170 52
NOS-045  F071 100 016 431 275 391 124 372 686 767 16 57 19 37 303 3.6
NOS-046  F072 93  -0.07 488 290 562 131 492 680 777 37 48 19 44 62 712
NOS-047  F073 98 007 394 271 535 121 510 682 772 3.1 44 38 53 93 76
NOS-048  F074 9.6 002 430 269 491 120 469 686 760 1.7 51 25 39 100 49
NOS-049  F075 98 010 440 291 385 126 373 678 763 1.8 38 33 38 69 52
NOS-050  F076 9.7  -0.02 449 273 453 122 382 681 737 25 49 22 31 128 54
NOS-051  F077 93 007 468 267 470 125 461 692 763 24 34 24 46 69 39
NOS-052  F078 80 033 505 282 554 129 469 688 752 27 48 20 43 65 74
NOS-053  F079 93 003 460 301 437 129 336 665 718 26 48 13 40 70 74
NOS-054  F080 9.6 001 434 285 405 127 514 675 766 24 45 19 31 179 13
NOS-055  F081 9.1 043 430 281 428 129 507 677 766 3.8 34 26 28 79 42
NOS-056  F082 9.7 003 478 297 583 129 473 677 757 41 37 36 37 134 52



Genotype  Code LP' GCA* TKW GC KH PC SV SC TW BR FH PM ST YR FT
NOS-057  F083 100 021 422 274 427 125 548 692 764 24 43 20 34 118 47
NOS-058  F084 99 012 475 289 549 127 481 671 755 35 34 36 41 118 68
LG-001 F085 100 003 499 284 574 127 515 682 781 26 55 3.6 45 130 47
LG-002 FO86 102 0.5 439 262 400 119 339 682 727 11 56 25 23 69 59
LG-003 F087 95 -025 481 281 568 129 479 683 764 34 39 30 43 108 49
LG-004 F088 98 008 529 276 549 124 445 691 776 27 46 31 47 137 66
LG-005 F089 9.6 007 435 268 539 125 457 678 765 25 44 27 51 101 719
LG-006 F090 99 019 473 282 428 128 492 669 778 33 44 25 34 188 5.1
LG-007 F091 10.1 007 466 266 468 126 507 684 771 37 31 31 27 61 59
LG-008 F092 8.6 -0.15 456 270 475 122 444 690 755 30 36 25 56 82 86
LG-009 F093 9.8  -0.11 441 275 432 123 426 684 736 26 41 16 44 53 80
LG-010 F094 92 002 485 271 450 123 500 681 751 32 61 23 60 108 58
LG-011 F095 9.6 005 447 260 347 120 284 679 702 3.0 50 31 44 53 70
LG-012 F096 94 015 441 265 432 120 398 687 735 42 46 17 47 81 68
LG-013 F097 103 047 500 259 360 120 315 685 738 12 50 15 31 214 73
LG-014 F098  10.1 0.6 494 276 525 125 330 667 751 13 48 1.7 19 64 42
LG-015 F099  10.1 027 429 261 473 117 406 685 724 12 54 15 44 154 39
LG-016 F100  10.1 0.7 498 256 518 118 415 684 763 14 40 29 35 104 5.1
LG-017 F101 104 029 493 251 454 117 411 692 759 10 48 34 28 123 71
LG-018 F102 104 041 524 277 466 121 435 690 786 21 39 15 34 65 3.0
LG-019 F103 9.8 005 481 269 531 125 468 695 768 24 41 18 38 98 64
LG-020 F104  10.0 013 472 262 531 121 486 688 792 20 43 22 52 86 55
LG-021 F105 100 024 453 262 481 119 441 682 777 38 37 23 43 197 59
LG-022 F106  10.0 007 485 260 457 119 425 695 767 22 47 16 30 616 5.1
LG-023 F107 9.8 007 463 283 423 13.0 589 685 763 24 40 35 33 65 42
SW-001 F108 89 015 541 291 408 132 487 678 757 29 32 18 45 50 5.1
SW-002 F109 95  -0.02 426 279 503 128 422 677 781 44 35 25 43 157 32
SW-003 F110 9.0 -0.16 444 281 464 131 517 678 780 26 38 28 45 101 34
SW-004 F111 97 -0.12 452 289 505 128 521 685 763 3.6 36 27 29 116 3.5
SW-005 F112 98 007 456 273 569 120 403 686 737 1.6 54 42 34 141 62
SW-006 F113 9.6 -0.01 461 292 580 128 548 664 756 19 49 26 49 66 713
SW-007 F114 98 007 487 293 440 130 542 674 761 39 47 29 35 77 22
SW-008 F115 104 030 439 283 483 126 480 673 760 64 35 14 32 67 36
SW-009 F116 9.1 000 500 276 427 128 513 672 782 23 48 18 29 114 33
SW-010 F117 92  -0.13 475 294 435 137 510 668 774 3.0 35 18 37 68 68
SW-011 F118 99 001 478 284 418 123 401 672 759 16 45 28 49 122 7.0
SW-012 F119 9.8 0.2 445 288 399 129 335 676 733 1.6 52 16 26 111 54
SW-013 F120 102 013 491 262 543 119 454 690 762 46 44 30 33 711 36
NOS-059  MO001 9.9  -0.01 475 271 614 119 474 688 775 39 37 25 34 52 34
NOS-060 M002 9.8 -0.04 486 280 533 124 434 675 713 35 34 31 46 100 42
NOS-061  MO003 93  -020 432 274 471 122 486 678 753 29 43 34 36 68 43
NOS-062  MO004 9.6 -025 458 292 462 125 506 672 760 27 34 28 38 69 33
NOS-063  MO005 9.8 0.2 482 277 473 122 493 678 775 33 40 36 37 85 37
NOS-064  MO006 104 020 473 278 484 120 432 680 766 38 39 28 37 135 3.1
NOS-065 MO007 9.8 001 486 271 594 121 436 685 779 29 47 19 43 102 42



Genotype  Code LP' GCA* TKW GC KH PC SV SC T™W BR FH PM ST YR FT
NOS-066  M008 10.0  0.04 46.4 269 494 120 442 685 787 46 44 28 28 65 2.4
NOS-067  MO009 10.0 0.20 45.8 255 451 11.7 483 691 773 23 40 32 36 194 33
NOS-068  MO10 9.4 -0.06 432 266 595 119 378 687 782 13 33 30 43 600 49
NOS-069  MO11 10.1  -0.05 47.9 279 51.8 125 538 685 776 34 32 22 42 102 40
NOS-070  MO12 9.1 -0.13 42.5 276 494 124 445 691 761 35 35 26 46 127 33
LG-024 MO13 9.9 -0.01 45.7 274 506 123 485 681 767 27 40 25 32 89 6.3
LG-025 MO14 10.1  0.13 51.3 262 551 120 340 696 770 28 33 19 41 134 52
LG-026 MO15 10.1  0.06 46.0 266 389 11.8 298 683 740 25 34 24 37 169 36

"' LP refers to the line per se performance
* GCA refers to the general combining ability effects of the lines

Table S2. Variance of genotypes (6°g), genotypes times environment interactions (62gxg), and

of the residuals (0%) as well as broad-sense heritability estimates (h?) for grain yield (Mg ha™")

evaluated in 11 environments. The hybrid performance was decomposed into general (GCA)

and specific combining ability (GCA) effects

Source Grain yield
Lines
loxre 0.14%*
G’GxE 0.22%*
h? 0.79
Hybrids
%G 0.08%*
G°GCA 0.03%*
G°scA 0.02%*
G’GxE 0.12%*
o2 GCAXxFEt 0.05**
GZSCAXE 0.03%*
o2 0.24
h? 0.73

** Significantly different from zero at 0.01 level of probability



Table S3 Summary of whole-genome prediction accuracies with standard deviations for six
methods evaluated with five-fold cross validation. T2 test sets included hybrids sharing both
parental lines, T1 test sets comprised hybrids sharing one parental line, and TO test sets
contained hybrids having no parental line in common with the hybrids in the related training

sets
Model TO T1 T2
GBLUP (Al) 0.31+£0.08  0.59+0.05 0.88+0.05
GBLUP (A+D2) 0.32+0.08  0.65+0.05 0.89+0.05
GBLUP (A+D+AA3) 0.32+0.09  0.65+£0.05 0.90+0.05
GBLUP (A+D+AA+AD4) 0.33+£0.09 0.66+0.05 0.90+0.05
GBLUP (A+D+AA+AD+DD5 ) 0.31+0.09 0.66+0.05 0.91+£0.04
Bayes-Cn (A+D) 0.32+0.08 0.66+0.05 0.90+0.05
1,2,3,4,5

Table S4 Correlation among kinship matrices of additive (A), dominance (D) and respective

additive, dominance, additive X additive, additive X dominance, and dominance X

dominance effects, respectively.

digenic epistatic (AA, AD, DD) variance components (VC)

vC A AA AD DD
A 1.00 0.70  0.12 0.09
D 0.08 035 0.68
AA 1.00  0.06 0.11
AD 1.00 0.39
DD 1.00




Table S5 Variance components of genotypes (6%g), genotypes times environment interactions
(0®6xe), and of the residuals (6%ror) as well as broad-sense heritability estimates (h?) for the
metabolites used to examine the 135 parental wheat lines

Metabolite oG O’GxE O2error N2

Oxalic-acid 0.11%** 0.02 0.78 0.58
L-Leucine 0.11%** Q. 17*** (.88 0.44
L-Valine 0.08***  0.11*** 036  0.54
Ethanolamine 0.04* 0.18***  0.46 0.28
Norleucine 0.06%**  0.13%** (.37 0.44
Isoleucine 0.07***  0.12*%** (.30 0.49
L-Proline 0.16%**  0.27***  0.45 0.55
Glycine 0.09***  0.06***  0.41 0.61
Glyceric acid 0.08%***  0.11***  0.42 0.52
Unknown_1 0.10%* 0.30%**  1.41 0.31
Threonic_acid-1_4-lactone  0.05* 0.13*** (.67 0.32
L-Threonine 0.62%* 4.72%%% 148 0.26
Pyroglutamic acid 0.15%**%  0.26***  1.20 0.43
Aspartic_acid 0.08*** 0. 11*** 0.82 040
Butanoic acid 2-amino 0.08***  (.13*** (.84 0.41
L-Glutamic_acid 0.171%** 0.30***  1.28 0.33
L-Phenylalanine 0.11%**  0.12***  (0.80 0.49
Pentose 1 0.12%*%  (23*** (91 0.42
Pentose_alcohol I 0.13%**% 0. 11***  0.39 0.65
Putrescine 0.16***  0.19*** (.57 0.59
Pentose _alcohol II 0.11%**  0.09***  0.64 0.55
cis-Aconitic_acid 0.34%**  (0.96*** 1.79 0.42
Lyxonic_acid 0.07***  0.16*** 0.54 041
Ornithin 0.07* 0.25%** 137  0.27
D-Fructose 0.14%* 0.59*** 182  0.28
Citric_acid 0.17%*%*  0.24*** (.83 0.52
L-Arginine 0.49%**  (0.25*** 102 0.74
D-Galactose I 0.14%**  0.14***  0.59  0.58
Quinic_acid 0.25%**  0.20***  1.08 0.61
Unknown_3 0.05* 0.23*** (.45 0.28
Hexose II b 0.42%**  (.38***  1.18 0.64
Pentose alcohol III 0.18***  (.13*** (.45 0.69
L-Tyrosine 0.11%%* 0.32***  1.01 0.36
Oligo 11 0.08** 0.24*** (0.84  0.33




Supplementary Figures
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Fig. S1. (A) Broad-sense heritability estimates and (B) Violin plots of standardized best linear
unbiased estimates for grain yield (GY, Mg ha™), 1000-kernel weight (TKW, g), gluten
content (GC, %), kernel hardness (KH), protein content (PC, %), sedimentation volume (SV),
starch content (SC, %), test weight (TW, g), brown rust severity (BR, scale 1-9), Fusarium
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head blight severity (FHB, scale 1-9), powdery mildew severity (PM, scale 1-9), Septoria
tritici blotch severity (STB, scale 1-9), yellow rust severity (YR, %), frost tolerance (FT, scale
1-9) and a weighted index (60% grain yield, 20% biotic and biotic stress severity, 20%
quality) for the 1,604 hybrids and ten released varieties classified into four quality groups
according to official variety testing in Germany. Number of environments in which the
genotypes have been evaluated is given in brackets. (C) Distribution of hybrid performance
for grain yield (Mg ha') evaluated in 11 environments in Germany. B refers to the
performance of the best parental line and M to the mean performance of the 1,604 hybrids.
The numbers 1 to 10 indicate the performance of different commercial checks: 1 = As de
Coeur, 2 = Colonia, 3 = Kredo, 4 = Genius, 5 = Hybred, 6 = JB Asano, 7 = Julius, 8 =
Tabasco, 9 = Tobak, and 10 = Tuerkis. LSD refers to the least significant difference at a
significant threshold of P < 0.05.
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Fig. S2. Relationship between the square root of the broad-sense heritability (h) for grain
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Fig. S3. Pie chart of genetic components of variance (additive variance 6?,, dominance
variance o’p and respective epistatic variance components) estimated with Bayesian

generalized linear regression.
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Supplementary Note

a. Absence of genetically distinct subpopulations

The presence of genetically distinct subpopulations impacts the implementation of cross
validation scenarios for hybrid prediction and association mapping. We inspected the
presence of subpopulations by using a complete linkage clustering method and observed
absence of genetically distinct subpopulations with only minor influence of the breeding
program from which the lines have been derived (Fig. Supplementary Note a-1). These
findings are in accordance with previous observations for wheat lines adapted to Central
Europe (17) and can be explained by the constant exchange of germplasm between breeding
programs.

05

Height
.02 03 04

0.1

A i _ 2
Ad

Fig. Supplementary Note a-1. Associations among the 135 wheat inbred lines revealed by complete linkage
clustering method based on Rogers’ distances among pairs of lines. Different colors refer to the origin of the
inbred lines into breeding programs (red = KWS, blue = NOS, green = LG, yellow = SW). Labels marked with
black triangles refer to males.

b. Chess-board-like cross validation and reliability criterion revealed high-quality of
the predicted hybrid performances for all 9,045 pairwise single crosses

As in factorial mating designs relatedness between training and test set influences prediction
accuracy, we followed previous suggestions (14) and sampled training sets consisting of 10
out of 15 male and 80 out of 120 female parental lines as well as 610 hybrids derived from
them. From the remaining hybrids, test sets with three successively decreasing degrees of
relatedness to the training set were formed (Fig. Supplementary Note b-1). Test set T2 most
closely related to the training set included only hybrids derived from the same parents as the
hybrids that had been evaluated, while the less related test set T1 included hybrids sharing one
parent with the hybrids in the training set and the least related test set TO included only
hybrids having no parents in common with the training set. For each test set, we used 100
cross validations and estimated marker effects. The obtained marker effects were then used to
predict the performance of the hybrids in the T2, T1, and TO test sets. The prediction accuracy
for each test set was estimated as the Pearson correlation coefficient between the predicted
and the observed hybrid performances standardized with the square root of the heritability.
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Fig. Supplementary Note b-1. Cross validation scenarios applied in our study. T2 test sets included hybrids
sharing both parental lines, T1 test sets comprised hybrids sharing one parental line and TO test sets contained
hybrids having no parental line in common with the hybrids in the related training sets

Cross validations are expected to deliver similar estimates of prediction accuracies
compared to independent validations as highlighted in the context of QTL mapping (43). One
important requirement, however, is that the cross-validation scenarios mimic the relevant
relatedness patterns. Our study is based on 1,604 single crosses. Thus, the applied cross
validation scenarios yield robust estimates for crosses between the female and male lines.
Nevertheless, the question arises whether the findings of the T2 scenario can be safely
expanded to the expected prediction accuracies for the intra-female and intra-male crosses.
We observed absence of a population structure among the male and female lines (Fig.
Supplementary Note a-1), which clearly suggests that the prediction accuracies observed
between female and male lines are comparable to those observed for intra-female and intra-
male crosses.

To further confirm that the prediction accuracies observed between female and male
lines are comparable to those observed for intra-female and intra-male crosses, we assessed
prediction accuracy of particular individuals merely based on genotypic data using the
reliability criterion (19). The reliability can be calculated via the GBLUP model, which is of
the form y=1,u+Zg+e, where g is the vector of genotypic values, Z is the
corresponding design matrix and e is the vector of residuals. We assume that g ~ N (0, Gaj),
where G is the n X n genomic relationship matrix (41), and e ~ N(0, 62). The reliability of
the estimated genotypic value of the it" genotype was defined as the correlation between the

true and estimated genotypic value: 1; = cor(g;, §;). To calculate it, we need to extract the

coefficient matrix of the mixed model equations (44):
_ Cll ClZ] _ n 1n,Z Cll C12 . .
C = Coi Gl ~ |71, Z'Z+G‘1aez/aj' Let 21 sz] be a generalized inverse

L2
matrix of C. Then, the reliability can be calculated as r; = ’1 — %, where d; is the diagonal

)
element in C22 corresponding to the i*" genotype. Note, that d;02 = SE(§;)? = var(g; —
gi) 1s the squared standard error or the prediction error variance of g; (44). We observed a
similar distribution of the reliability criterion for the factorial crosses as compared to the intra-
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female and intra-male crosses (Fig. Supplementary Note b-2). Consequently, the prediction
accuracies estimated based on the experimental data of the factorial crosses well approximate
the prediction accuracy for all 9,045 pairwise single crosses.
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Fig. Supplementary Note b-2. Histograms of reliabilities estimated for the intra-female and intra-male hybrids as
well as for the phenotyped and non-phenotyped single crosses between males and female lines

c. Association mapping reveals absence of large effect QTL for grain yield

We performed association mapping using the software ASReml-R 3.0 (45). and corrected for
population stratification by fitting a polygenic effect for the breeding values of the parents,
where the covariance was modelled using the kinship matrix estimated from the marker data.
We also tested a model correcting for population structure with the kinship matrix and the
first ten principal coordinates (Q+K model). We contrasted these approaches with a model not
correcting for population stratification except considering a group effect (lines versus hybrids)
using quantile-quantile plots. We compared the different models by plotting the observed
versus the expected P-values (Fig. Supplementary Note c-1). Assuming that none of the SNPs
is associated with the trait, the P-values are expected to follow the diagonal. The distribution
is expected to deviate from the diagonal, however, if true marker-trait associations are present
causing a bulge at the left side of the plot. As true marker-trait associations are not known, the
true distribution of P-values cannot be predicted but strong bulges clearly indicate inflated
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false-positive rates. Inspecting the quantile-quantile plots for our data revealed that population
stratification had to be considered through modelling the kinship matrix for the lines and
hybrids but correcting for population structure with principal coordinates was not required
(Fig. Supplementary Note c-1).
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Fig. Supplementary Note c-1. Quantile-quantile plots for association mapping for additive and dominance effects
without correction for population structure (Null model) and correcting for population structure with a kinship
matrix (Kinship model) and the first ten principal coordinates (Q+K model).

Presence of large effect QTL was examined by studying the prediction accuracy of the
association mapping applying cross validations. In the cross validations, we split the total data
set into training and test sets as outlined in the material and methods part (Fig. Supplementary
Note b-1). We used 100 cross validations and estimated marker effects of the QTL identified
in the genome-wide association mapping scan in each cross validation run within the training
sets. We applied the association mapping model outlined above correcting for population
stratification with a kinship matrix. The effects for the detected QTL were estimated with a
linear model and then used to predict the performance of the hybrids in the TO test sets. The
prediction accuracy for each test set was estimated as the Pearson correlation coefficient (r)
between the predicted and the observed hybrid performance standardized with the square root
of the heritability. We observed for a wide range of significance values prediction accuracies
close to zero despite detecting a substantial number of QTL in every scenario (Fig.
Supplementary Note c-2). These findings clearly suggested absence of large effect QTL for
grain yield in our study.
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Fig. Supplementary Note c-2. Cross validated accuracies of prediction of association mapping for grain yield in
the TO scenario with hybrids in the test sets having no parents in common with the hybrids in the training set.
Number in parenthesis refers to the average number of marker-trait associations detected in the 100 training
populations.

d. Efficient designs of training populations

We evaluated the possibility to optimize the design of the training population to predict grain
yield performance of related T2 hybrids using the G-BLUP(A+D) approach in combination
with 100 cross validations. We compared four different designs of the training population: (1)
A nested factorial mating design with 120 hybrids (single crosses of each male line with eight
female lines; Fig. Supplementary Note d-1A). (2) An incomplete factorial design comprising
360 hybrids (single crosses among each female line with 3 male lines, there are 2 overlapping
male parents in each neighboring single cross; Fig. Supplementary Note d-1B) with balanced
missing data structure. (3) Top-cross design comprising 396 hybrids resulting out of crosses
among all 120 females with three randomly selected male tester lines and among all male
lines crossed with three randomly selected female tester lines (Fig. Supplementary Note d-
1C). (4) As standard scenario we implemented an incomplete factorial design with random
missing hybrid combinations using two population sizes of 120 and 360 hybrids (Fig.
Supplementary Note d-1D). For all four scenarios, we studied the prediction accuracy
including and excluding the 135 parental lines in the training populations. Our findings
clearly showed that a drastic reduction in training population size from 1,604 to 360 hybrids is
possible without substantially reducing the prediction accuracy (Table Supplementary Note d-
1). Interestingly, a random sampling of 360 hybrids yielded equal or higher prediction
accuracies than targeted designs such as the nested factorial, balanced incomplete factorial, or

top-cross designs (Table Supplementary Note d-1).
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Table Supplementary Note d-1. Prediction accuracy (rg) and its standard deviation (SD) for four different
designs of the training population including and excluding the 135 parental lines

. Size of training
Design . G SD(rc)
population

Including parents

Nested design 120 hybrids 0.78 0.02

Balanced incomplete factorial design 360 hybrids 0.85 0.01
Topcross design 396 hybrids 0.79 0.03

Random design 120 hybrids 0.79 0.02

Random design 360 hybrids 0.86 0.01

Excluding parents

Nested design 120 hybrids 0.62 0.05
Balanced incomplete factorial design 360 hybrids 0.82 0.02
Topcross design 396 hybrids 0.74 0.05
Random design 120 hybrids 0.62 0.05
Random design 360 hybrids 0.82 0.02
(A) Malgl Male2 s Male14 Male15 (B) Malel Male2 s Male14 Male15

Femalel Female1
Female8
Female9 Female15
Female16
Female105 H
Female112 Female105
Female113
Female120 Female120 h

(€ Male1:+ Male3 sses Male14 Male15 (D) Malel Male2 s=sst Male14 Male15
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Female2 remaie2 [ '
Female3 Female3
Femaled Femaled -
Female5 Female5
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I |
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Fig. Supplementary Note d-1. Four different designs of training populations: (A) Nested design, (B) Balanced
incomplete factorial design, (C) Topcross design, and (D) Random design.

17



e. Implementation, performance and robustness of the developed simulated annealing
algorithm as well as long-term success of the identified heterotic pattern

We implemented a simulated annealing algorithm (46) to maximize the hybrid performance to

search for heterotic groups. The details of the simulated annealing process are described as

follows. Suppose we have a population of n parents L = {l;, [,, ..., [}, and we need to find the

heterotic groups of size m (m < n/z ,m € N with N referring to the natural numbers). For
the simulated annealing method, we could define the state space as () = {(Gl,Gz)|Gl =
{Lip byl Gy igy ey im € NLYL, Go = {Ui, Ly oo Ui i Jizs v jm € N, Gy N G, = 0},

where N, = {1,2, ...,n}, and the goal function is: F(G,, G,) = # w=1 vt fiy, j,» Where fi ;

is the estimated performance of the hybrid generated by crossing [; with [; (i,j € N, and i #

J). The annealing schedule is T = T, RL"_’I, where T, is the initial temperature, k is the cycle

kmax—

of iterations, and k4, 1s the maximum cycle of iterations. We employed
F(G’l,cg)-F(Gl,Gz)

P(F(G4,G,),F(G{,G3), T) = min {1, ef} as the acceptance probability function
from state (G4, G,) to state (G1,G3) at temperature T, which was proposed elsewhere (46).
The central steps of the simulated annealing algorithm are summarized as follows:
Stepl: Initializing all parameters. Set the initial values for temperature T, the maximal
iteration cycles k4, and the restart threshold r. Start from k = 0 and randomly sample 2m
parents from L as the initial heterotic groups (G4, G,). Let Foyyrent = F (G4, G). The parents
not chosen into the initial heterotic groups will form the “left set” LEFT = L — (G, U G,).
Step 2: Let (Gypests Gapest) = (G1, G2), LEFTyeqe = LEFT, and Fyese = Foyrrent:
Step 3: Let k = k + 1, calculate T, randomly choose one parent [;f; from LEFT and one
parent loyyren from Gy U Gy, respectively, replace loyprens With liere, and form the new state
(G1, G3) and the new “left set” LEFT".
Step 4: Calculate F(Gy,G;), and accept the new state in the following ways: (a) If
F(G4,G3) > F(Gq,G,), accept the new state (G4, G3), i.e., set (Gy,G,) = (G;,G3), LEFT =
LEFT', and Feyrrene = F(G1,G3). Further, if Feyprent > Fpese, set (Gl,best' Gz,best) =
(G1,G,), LEFTys; = LEFT, and Fyps; = Foyrrent- (b) If F(G1,G}) < F(G4,G,), accept the

F(61,63)-F(G1,62)
new state (G, G;) with the probability of p = e T . If the new state is accepted,

set (G1,G,) = (G4, G3), LEFT = LEFT', and Fyypene = F (G, G5).
Step 5. If Fbest - Fcurrent >, set (Glr Gz) = (Gl,bestJ GZ,best)v LEFT = LEFTbest’ and

Feurrent = Fpest-
Step 6: Repeat Step 3 to Step 5 until k reaches k4, then output (Gy,G,), Feyrrent:

(Gl,best' GZ,best)' and Fbest-

To try to avoid being trapped in the local optimum, we started the iterations at a relatively
high temperature and repeated the above simulated annealing algorithm at least 10 times, each
starting with a randomly chosen state. As final result we used the best performing replication.
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We evaluated the performance of the developed simulated annealing algorithm to
identify heterotic groups by maximizing the hybrid performance. First, we studied the
computational time for different heterotic group sizes setting T, = 0.75and r = 7.5 and
repeating the algorithm for 10 times with an appropriate k,,,, (Table Supplementary Note e-

1.

Table Supplementary Note e-1. Computational time of the developed simulated annealing algorithm under
different parameter settings for identifying heterotic groups among the 135 parental lines maximizing the hybrid

performance
Size of heterotic Ty r Konax Time for Time for all
Groups (s) one run' 10 runs
s<10 0.75 7.5 100000 <5.5sec <55sec
10<s5<20 0.75 7.5 1000000 <54 sec <9 min
20<s5<26 0.75 7.5 10000000 < 10 min <100 min
26<s5<36 0.75 7.5 60000000 <1h <10h

! Computation time was assessed using following setting: processor - Inter(R) Core(TM) i5-3470 CPU @
3.20GHz 3.20GHz, RAM: 8GB, 64-bit; Operating System, Software: R x64 3.1.1

For small heterotic group sizes, we tested the robustness of the developed simulated
annealing algorithm against an exhausted enumeration algorithm (15). Both algorithms were
used to identify heterotic groups of size 8 from 20 parents. The detected heterotic groups
maximizing the hybrid performance were the same for both algorithms. The computational
efficiency, however, was up to 13 times faster for the simulated annealing versus the
exhausted enumeration algorithm. We further studied the repeatability of the simulated
annealing algorithm for larger heterotic group sizes and observed reasonable repeatability
with the difference of the group constitution reflecting only small differences in the maximum
hybrid performance below 0.02%. Thus, the performance of the developed simulated
annealing algorithm facilitates a robust identification of heterotic groups maximizing the
hybrid performance.

The simulated annealing algorithm is based on the predicted hybrid performances of
the 9,045 single crosses. The use of predicted and not observed values can, however,
introduce a bias. Therefore, we devised a cross validation scenario exclusively for the
phenotyped hybrids to examine the stability of the groups identified with the simulated
annealing algorithm (Table Supplementary Note e-2). As no intra-female and intra-male
hybrids were phenotyped, the cross validation scenario selects promising lines for heterotic
groups only for the pattern male times female lines.

As reference base for the cross validations, we identified heterotic groups with two
population sizes (male lines = {5, 7}; female lines = {10, 25}) based on the observed hybrid
performances of all 1,604 single crosses. In every cycle of the 100 cross validation runs, we
randomly selected 360 out of the 1,604 hybrids. The 360 hybrids and 135 parents served as
training population for genomic predictions of the performances of all 1,604 single crosses.
This scenario mimics the procedure for the prediction of the 9,045 hybrids based on the
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phenotyped 1,604 single crosses and the 135 parents. We used the predicted hybrid
performances of the 1,604 hybrids based on the training population of the 360 hybrids and
135 parents and identified heterotic groups with the above specified population sizes (male
lines = {5, 7}; female lines = {10, 25}). We then compared the heterotic groups based on the

predicted versus the observed hybrid performances and confirmed the stability of the groups
identified with the simulated annealing algorithm: Around 80% of the individuals overlapped
between the groupings based on predicted and observed hybrid performances (Table
Supplementary Note e-3).

Table Supplementary Note e-2. Composition of the heterotic groups identified with the simulated annealing
algorithm as well as average hybrid performance within (Intra) and between both heterotic groups (Inter)

Group Group 1 Group 2 Inter
size Selected lines Intra Selected lines Intra
2 MO006 M009 11.12 F102 F097 11.29 1143
4 M006 M005 M009 M014 11.08 F097 FO06 F102 FO12 11.05 11.33
6 MO014 FO61 M009 M005 M006 11.09 FO012 F101 F099 F006 F097 11.06 11.26
F115 F102
8 FO61 F115 M006 M015 M008 11.02 F102 FO12 F006 F020 F099 11.08 11.20
MO014 M005 M009 F101 F097 F060
10 F100 M005 F003 M006 F061 FO90  10.99 F006 F099 F101 FO12 F097 11.08 11.16
MO009 M015 M014 M008 F060 F102 F020 F115 F001
12 F090 F105 F003 M006 FO61 M015  10.99 F001 F006 F097 FO12 F120 11.05 11.12
F100 M014 F067 M005 M009 MO001 F102 F101 F020 F099
MO008 F060 F115
14 F105 M014 M009 F067 F100 10.96 F022 F001 F083 F097 M001 11.01 11.10
MO015 F090 F104 M005 F061 F006 F101 F020 F120 F060
MO007 FO03 M008 M006 FO12 F115 F102 F099
16 MO009 M007 FO61 F105 F100 10.95 F101 FO06 F099 F086 F102 10.99 11.07
MO008 M005 F003 F104 M014 F012 F044 F022 F115 F097
F090 F065 M006 M015 F084 F067 F060 FOO1 F120 F020 M001
F083
18 F061 F104 M006 M008 F003 FO84  10.93 F101 F115 F099 F060 F120 10.95 11.05
F105 F100 F065 F090 M014 F067 F102 F044 F071 F020 F097
MO005 M009 M015 M007 FO64 F012 F022 F086 F083 F001
MO13 F032 M001 FO06
20 MO006 M009 FO03 F104 M002 10.91 F012 F097 F071 F041 F044 10.92 11.03
F100 F062 F090 FO84 M007 MO15 F020 F119 F001 F120 F060
F105 M014 F064 F061 M013 F067 F032 F101 F099 F102 F022
MO008 M005 F065 F006 FO86 F083 M001 F115
22 MO013 M008 F065 M006 F105 10.90 F119 F120 F020 F097 F098 10.91 11.01
MO009 M007 FO67 F084 M010 F086 FO71 F099 F041 F083
FO061 M005 M014 F106 F104 F006 M001 F022 F044 F101
MO002 F003 F100 F090 F062 F064 F115 F102 F001 F032 F060
MO15 F014 FO12
24 F104 F037 F090 M008 F067 M013  10.88 F060 F115 F041 F119 F120 10.88 10.98
MO005 M009 M014 M002 F105 F032 F091 F098 F006 F0O83
MO015 F065 M007 M010 F106 F020 FOO1 F101 F096 F086
F084 F066 F061 M006 F064 FO03 F102 F097 F022 F012 M001
F100 F062 F014 F099 F071 F044
26 MO002 M010 F037 F090 M006 10.86 F014 F060 F096 M001 F101 10.86 10.96
F065 M014 F003 F066 M005 F105 F012 F032 F086 F083 F001
F062 M008 F067 F084 F104 M011 F115 F071 F102 F098 F097
MO007 F106 M015 F061 F064 F099 F006 F022 F091 F120
MO009 M013 F100 F103 F039 F020 F041 FO16 F119
F044
28 F100 M009 M007 F062 M005 10.87 F016 F102 F022 F071 F032 10.82 10.94

F106 F067 F104 FO85 F061 F084

F097 F060 F041 F096 F046
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MO006 FO37 F105 F101 M008 F039 F120 F012 F091 M001

MO11 F065 F064 M014 MO013 F119 F075 F099 FO07 FO83
F090 F066 M002 M010 F103 F115 F086 F020 FO06 F044
MO15 F003 F014 F098 F001
30 MO002 F064 M013 F090 F003 10.85 F016 F107 FO91 F006 F114 10.80 10.91
MO009 F046 F104 F084 F065 F106 F119 F022 F115 F102 FO71
F062 F101 F103 F105 M014 F100 MO001 M010 F097 F020 F086
MO15 M006 M008 FO67 FO85 F001 FO75 FO14 F039 F012
F037 M005 M011 M012 F098 F096 F032 F007 F099 F060
F061 F066 M007 F044 F120 F041 FO83 F077
32 MO13 F085 F104 F084 M010 F062  10.85 F096 F032 F0O01 F119 F022 10.77 10.89
F106 M005 F037 FO64 M006 F105 F059 FO06 F041 FO89 F120
F065 M014 M015 F066 F090 F016 F044 F095 FO86 F115
MO009 F003 F061 M002 M007 F107 F091 FO75 FO14 F020
MO012 F100 F103 F024 F098 M011 F071 F114 FO77 F039 F007
F067 F046 F101 M008 FO083 F102 F099 F012 M001
F097 F060
34 F067 F062 M008 M013 FO85 F106  10.85 F075 FO89 F044 F012 F107 10.72 10.87
F102 M012 M006 F024 F103 F064 FO007 F096 FO83 F014 F032
F104 F120 FO58 F101 M007 F065 F001 F119 FO71 M001 F026
F066 M014 M010 F100 F037 F105 F115 F039 F006 F041 F047
MO15 M005 FO61 F090 F003 F042 F098 F095 FO16 F097
MO002 FO84 M011 M009 F114 F059 F022 F086 F099 F060
F091 FO77 F046 F020
36 MO007 FO65 F084 F114 F067 FO64  10.85 F086 FO07 F039 FOO8 M001 10.69 10.85
F024 M012 M002 M005 F085 FO071 FO80 FO16 F042 F091
F058 M008 F003 MO015 F002 F096 F060 F118 F099 F046
MO010 FO61 M009 F106 F105 F102 F077 F107 F014 F098 F001
F104 F062 F066 F037 M013 F103 FO083 F059 F047 FO12 F044
F115MO006 F090 F120 M014 F100 F022 F006 F097 F095 F020
MO11 F101 F041 FO75 F119 FO89 F032
F026

Table Supplementary Note e-3. Overlap (%) of identified genotypes for the male (Male) and female heterotic
group (Female) based on observed versus predicted hybrid performances of the 1,604 single crosses

Group size Male Female Total
5+10 81.00 74.60 76.73
7+25 76.43 75.72 75.88

We contrasted the average hybrid performances of the heterotic pattern identified with
the simulated annealing algorithm with those of potential heterotic patterns defined using
standard clustering approaches. As clustering approaches we used the Ward’s clustering based
on the predicted hybrid performances and Rogers’ distances (Fig. Supplementary Note e-1, 2).
The average predicted hybrid performances of all potential pairs of groups identified by the
clustering methods were smaller than the comparable scenarios of the heterotic patterns
identified by the simulated annealing algorithm (Table Supplementary Note e-2). The highest
yielding heterotic pattern identified based on the Ward’s clustering method has a performance
of 10.69 Mg ha (Fig. Supplementary Note e-1) or 10.81 Mg ha™ (Fig. Supplementary Note
e-2), i.e., resulting in an increase of 0.17 Mg ha™ or 0.29 Mg ha™ compared to the average
hybrid performance of all 9,045 single crosses. The performance of the corresponding
heterotic pattern identified with the simulated annealing algorithm amounted to 10.97 Mg ha™
for the corresponding group sizes of the Ward’s clustering results based on Rogers’ distances
or 11.03 Mg ha™ for the corresponding group sizes of the Ward’s clustering results based on
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predicted hybrid performances. This results in increases of 0.45 Mg ha™' or 0.51 Mg ha™
compared to the average hybrid performance of all 9,045 single crosses. Thus, using the
simulated annealing algorithm doubled the gain in performance contributed by the Ward’s
clustering method underlining the value of the simulated annealing algorithm in order to
identify high-yielding heterotic patterns.

Grouping threshold — |
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Predicted F1 performance (Mg ha™)

TITLLLIT

Fig. Supplementary Note e-1. Average hybrid performances (Mg ha™) of heterotic patterns (below diagonal)
identified using the Ward’s clustering approach based on the predicted hybrid performances of 9,045 single
crosses (above diagonal).
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Fig. Supplementary Note e-2. Average hybrid performances (Mg ha™) of heterotic patterns (below diagonal)
identified using the Ward’s clustering approach based on the Rogers’ distance among 135 parental lines. The
predicted hybrid performances of all 9,045 single crosses were depicted above the diagonal.

In order to highlight the advantages of the developed strategy to search for an optimal
heterotic pattern, we contrasted it with several alternative approaches: a) Parents were
selected based on their per se performances followed by a random clustering of superior lines
into heterotic groups. b) Parents were selected based on their general combining ability effects
followed by a random clustering of superior lines into heterotic groups. ¢) Midparent heterosis
values were used as input matrix of the simulated annealing algorithm. d) Better-parent
heterosis values were used as input matrix of the simulated annealing algorithm. The findings
of the selection of parents based on their per se performances were discussed in detail in the
main part of the manuscript (Table 1). Therefore, we focused here on alternative scenarios
relying on general combining ability effects, mid- and better-parent heterosis (Table
Supplementary Note e-4). The developed strategy to search for an optimal heterotic pattern
based on the hybrid performances outperformed all alternatives with respect to the most
relevant criterion grain yield. Using the developed simulated annealing algorithm with
heterosis values as input matrix resulted in a drastic reduction in grain yield performance of
the hybrid population corresponding to up to 20.9 years of selection gain. Therefore, using the
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simulated annealing algorithm based on heterosis values is despite the benefits in the ratio of
additive versus the dominance genetic variance, no promising alternative compared to the
developed approach using the simulated annealing algorithm based on a matrix of the hybrid
performances.

Choosing parents for heterotic groups based on their general combining ability effects
showed the smallest difference in grain yield performance still corresponding to up to 7.5
years of selection gain. Nevertheless, we observed a higher ratio (up to 5.3 times higher) of
the additive versus the dominance genetic variance for the heterotic groups identified
applying the simulated annealing algorithm based on estimated hybrid performances
compared to the scenario of random grouping of lines selected based on their general
combining ability effects. The enhanced relevance of additive genetic variance contributes to
an increased recurrent selection gain (16). Moreover, predictions based on additive effects are
more accurate than those based only on dominance effects (14). Summarizing, these findings
clearly underline the value of the simulated annealing algorithm based on the hybrid
performances in order to identify high-yielding heterotic patterns.

The long-term success of the identified heterotic pattern is assessed by estimating
usefulness, selection limit, and representativeness of the heterotic pattern with respect to a
defined base population. The concept of usefulness was introduced to quantify the
performance of a selected fraction of a population after one cycle of selection of line breeding
(22). Here, we implemented a modified usefulness criterion Ug g, to quantify the
performance of a hybrid population resulting from crossing two heterotic groups (G;, G5)
after one, five, and ten cycles of selection. For such moderate lengths of selection cycles and
low selection intensities, we assumed that the genetic variance of the hybrid population is not
impacted by selection. This assumption is based on previous simulation studies highlighting
that for complex traits influenced by a couple hundred QTL, the genetic variance will not
decrease within 10 cycles of selection (23). The modified usefulness of a heterotic pattern
(G1, Gy) is then defined as Ug, 5, = Ug + Nc0gishs, where ug is the mean genotypic value of
the hybrid population generated by randomly crossing parents in G; with those in G,, n,
denotes the number of the selection cycles, o2 is the genetic variance in the hybrid
population, igis the selection intensity and hgthe square root of the heritability, whose
product was defined as 1.75 (h? = 0.73; is—g05 = 2.05). The parameters ug; and o7 were
estimated for each pair of heterotic groups by combining computer simulations using the
software package Plabsoft (47) with the developed genomic selection models. First, we
generated SNP profiles of 1,000 gametes extracted from a gene orthogonal population, which
was established by crossing the detected parental lines of each heterotic group. Second, the
two simulated populations were crossed to generate a hybrid population. The genomic profiles
of the hybrids were used in combination with the developed genomic selection models and the
mean (i) and variance of the hybrid populations 6Z were estimated. Following the defining
of the maximal long-term selection response (23), we estimated the theoretical selection limit
of a hybrid population resulting from crossing two heterotic groups. The theoretical selection
limit was estimated using the marker effects determined through genomic prediction in the
population of the 1,604 hybrids and assuming absence of migration, mutations, and epistasis.
Assume two alleles per QTL and ny; QTL underlying the trait under consideration. Suppose
that the two alleles of the xth QTL are denoted as A, ; and A,, (x =1,2,...,ny). For the
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heterotic groups G; and G, as defined previously, the theoretical selection limit is
TSL(Gy,Gy) = u+ YoM, MAXp, e, q.e0:l YAy, Arq, ) Where p is the overall mean of the

hybrid population, ga, 4, is the genotypic value of the genotype Ay Ay, (s,t = 1,2) which
was estimated through genomic prediction, and G, = {Ax‘px, px €EP, C {1,2}}, Gy =

{Ax,qx, q. € Q, C {1,2}} are the sets of alleles at the xth QTL segregating in the individuals
of G, and G,, respectively.

The proportion of the unique genomes in the population represented by a subset of
individuals was measured by the genetic representativeness (48). The genetic
representativeness of two specific heterotic groups (G4, G,) is defined as follows. For the L,
Gy, G,, and N, as defined previously, and for individual [, (w € N,), the proportion (Pr,, ) of

l,,’s genome present in G; U G, is:

_ L. e .. L e .. o—1 1. - r L
al111 al1lm all]l al1]m al1W Prl1
ry = (| xSt s || i || 0 6,00 P
P cee P PR e PR . 9
Qjyiy rim Y1j1 1 jm Ajsw PT]-l e R 1o
LGmiy " Ymig Ymjs " Ymjmd  LGwd | P1; ]

where aj; is the additive relationship between individual [; and [;, i,j € Ni; Ag yg, 1s the

additive relationship matrix among all individuals in G; U Gy; dalucz,w is the vector of

additive relationships between all individuals in G; U G, and individual [,; ﬁaluaz is the
vector of the genome proportion present in Gy U G, (which is actually a vector of 1s). The
additive relationship is defined as 1 minus the Rogers’ distance of two individuals. The

genetic representativeness of two heterotic groups (G4, G,), is the average value of Pr, of all

o el
n individuals in L: Pr = ~dw=1 Pry,.
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Table Supplementary Note e-4. Comparison of overlapping genotypes (OG, %), yield increase expressed as number of years needed to realize this selection gain ((18), ASG,
years), increase in midparent heterosis (AMPH, %, increase in average Rogers’ distances (ARD, %), and decrease in the ratio of dominance versus additive genetic variance
(AVC, %) contrasting the heterotic pattern identified based upon the simulated annealing algorithm versus three alternative approaches: Parents were selected based on their
general combining ability effects followed by a random clustering of superior lines into heterotic groups (GCA selection). Midparent heterosis values were used as input matrix of
the simulated annealing algorithm (Midparent heterosis). Better parent heterosis values were used as input matrix of the simulated annealing algorithm (Better-parent heterosis).

Group

size 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
GCA selection

oG 50 50 58 69 75 71 71 81 81 83 82 81 87 86 88 89 87 86
ASG 7.5 6.9 6.3 3.4 29 3.1 32 2.5 2.3 2.5 2.7 2.7 2.3 2.4 2.2 2.1 2.3 2.3
AMPH 12 13 11 5 5 5 5 4 5 7 7 6 6 5 5 6 6 5
ARD 1 2 6 2 1 1 1 2 3 3 3 2 3 3 3 3 3 3
AVC 81 84 83 76 71 44 45 56 53 49 42 43 51 43 39 39 38 38
Midparent heterosis

OG 0 50 42 38 35 38 32 34 39 48 52 52 56 52 57 61 62 67
ASG 20.4 6.2 7.7 9.0 9.6 8.8 10.1 9.0 8.5 7.6 7.0 7.2 6.6 6.6 5.8 5.8 5.4 4.9
AMPH -9 -10 -9 -9 -10 -9 -9 -8 -8 -7 -7 -6 -6 -7 -6 -5 -5 -4
ARD -15 -10 -8 -14 -15 -12 -12 -10 -10 -10 -10 -10 -9 -9 -8 -8 -7 -6
AVC -2480 -642 951 -634 -698 -959 -848 -709 -686 -551 419 -372 -338 -324 -325 311 245 -234
Better-parent heterosis

oG 0 25 33 0 0 0 0 0 3 10 14 19 19 20 25 34 46 51
ASG 7.6 7.0 6.5 209 202 192 169 156 148 137 13.1 13.0 132 131 126 117 103 97
AMPH -3 -4 -4 -3 -3 -2 -3 -3 -2 -1 0 0 0 -1 0 1 1 1
ARD -7 -9 -6 -15 -15 -13 -12 -11 -9 -9 -8 -8 -8 -7 -6 -7 -5 -4
AVC 88 91 55 63 56 38 -15 -5 8 1 9 15 5 13 14 23 28 26
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f. Phenotypic data analyses

The 1,749 genotypes (1,604 single-cross hybrids, 135 parents, 10 commercial varieties) were
evaluated in two years at totally 11 environments in Germany. The locations were Adenstedt
(Ade), Seligenstadt (Sel), Bohnshausen (Boh), Hohenheim (Hoh), Hadmersleben (Had), and
Harzhof (Hhof). The experimental design at each environment consisted of 3 trials. The trials
were partially replicated 20x10 (augmented with 10) alpha lattice designs which were
connected by 10 replicated common checks (Fig. Supplementary Note f-1). The same seeding
rate was used for both parental lines and hybrids. The plot size ranged from 5 m? to 7.4 m?.
Harvesting was performed mechanically and adjusted to a moisture concentration of 140 g
H,O kg'. We checked for the presence of neighboring effects due to plant height. We
observed, however, absence of an association between grain yield and plant height of the two
adjacent plots (e.g., average Pearson moment correlation of r = 0.05 for the three trials at the
environment Seligenstadt 2012). Besides this, further data was collected for quality traits (37)
and on separate observation plots also for abiotic and biotic stress resistances ), Details on the
analyses of these traits were published elsewhere (37).
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Fig. Supplementary Note f-1. Graphical illustration of the experimental field design used at Seligenstadt in 2012.

We applied a two-step procedure proposed by Mohring and Piepho (49) for the
analyses of the grain yield data across environments using the standard error as weighing
factor. In the first step, we used a mixed model procedure for the analyses of individual
environments modelling effects for genotypes, trials, replications nested within trials, and
blocks nested within trials and replications (37). Best linear unbiased estimates (BLUESs) of

27



genotypes were calculated. We inspected the pairwise correlations among BLUEs of the
1,749 genotypes evaluated in the eleven environments and observed absence of grouping into
distinct mega-environments (Fig. Supplementary Note {-2).
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Fig. Supplementary Note f-2. Correlations among BLUEs of the 1,749 genotypes evaluated in eleven

environments.

For the analyses across environments, we applied the following linear mixed model
based on BLUEs of individual environments:
Grain yield ~ Group + Environment + Lines + Hybrids + Lines:Environment +
Hybrids:Environment.
All effects except the group effect were treated as random. The total variance of hybrids was
further decomposed into variance due to general combining ability effects (GCA) of males
and females, and variance due to specific combining ability (SCA) of crosses:
Grain yield ~ Group + Environment + GCApates T GCAfemates 7 SCA + GCA pates: Environment
+ GCA femates: Environment + SCA :Environment.
We assumed that the variance due to GCA is same for both males and females and estimated
the variance components by the REML method using the software ASReml-R 3.0 (45).
Significance of the variance component estimates were tested by model comparison with
likelihood ratio test (50). Broad-sense heritability was calculated as the ratio of genotypic to
phenotypic variance, H? = ¢Z/( 0 + oixg/E + 02 /(E X R)), where E refers to the
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number of environments, R is the average number of replications per entry at a location, and
02 refers to pooled error variance. In addition, we assumed fixed genotypic effects to obtain
BLUE:s of the genotypic values of hybrids, parents, and commercial varieties.

Commercial heterosis was calculated for each hybrid as CH = F1 - Check, where F1
denotes the grain yield performance of the hybrid and check refers to the grain yield of the
best performing commercial variety. Midparent heterosis was calculated as MPH = F1 — (P1 +
P2)/2, where P1 and P2 denotes the performance of the parental lines of the respective hybrid.
We used the least significant difference (LSD) at an alpha level of 5% to test whether a hybrid
outperformed the best commercial check.

g. Metabolite profiling

We sampled for each of the 135 parental lines 10 flag leafs per replicate at three environments
at the time when >60% of the genotypes had reached BBCH-69 (39). Flag leaf samples were
cut off, bulked, shock frozen in liquid nitrogen and further transported on dry ice. All plots
were sampled during 9-11 am within 120 min. Prior extraction samples were freeze dried and
homogenized by means of a ball mill (MM200, Retsch, Haan, Germany). Polar leaf
metabolites were extracted twice with 500 pl/20 mg DW of 70% MeOH containing 50 uM
13C6/D7 glucose as an internal standard (Sigma-Aldrich, Munich, Germany). Supernatants
were collected by centrifugation at 20,000g, 4°C for 20 min and combined. For phase
separation 1,000 pl of water and 500 pl of chloroform were added. In order to capture
systematic shifts during extraction and measurement we created a mixed sample consisting of
equal amounts of all samples. The measurement of polar flag leaf extracts followed the
protocol of Lippmann et al. (40). Data acquisition and processing was performed with
MassLynx 4.1 software (Waters, Milford, MA, US).

To achieve homoscedasticity of the residuals of metabolites, the Box-Cox power
transformation was applied. After outlier tests (51), we used a one-step model to estimate the
genetic variance components of lines as well as the variance of genotype X environment
interactions. Significance of variance component estimates were tested by model comparison
with likelihood ratio tests where the halved P values were used as an approximation (50). A
total of 34 metabolic traits were included for further analyses exhibiting significant (P < 0.05)
genetic variances (Table S5). Using the variance components, we estimated the heritability on
an entry-mean basis. In addition, we assumed fixed genetic effects and estimated the best
linear unbiased estimates (BLUEs) of lines. The data analyses of the metabolic traits were
performed using the software ASReml-R 3.0 (45).
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h. Statistical methods for genomic prediction

Genomic best linear unbiased prediction model (G-BLUP) including additive, dominant
and epistatic effects
Let n be the number of genotypes. The G-BLUP model has the following form:
y=1att+ 9o+ ga+t Jaa + Jaa + Gaa *+ e

where y is the vector of phenotypic records, 1,, is an n-dimensional vector of ones, u refers to
the mean. The total genotypic values are decomposed into five parts: additive (g,),
dominance (g,), additive X additive (g,,), additive X dominance (g,4), and dominance X
dominance effects (g,;q). Please note that g,, represents a composite of additive X
dominance as well as of dominance X additive effects. We assumed that u is a fixed
parameter, e ~ N(0,162), gq ~ N(0,G402), ga ~N(0,6403), Gaa ~ N(0,Gaqoly),
Jaa ~ N(0,Geq02,), and ggq ~ N(0, Ggq0Z,), where the matrices Gg, G4, Gag, Gaq, and Ggaqg
are the relationship matrices corresponding to additive, dominance, and epistatic genotypic
values. We further assumed that all other possible covariance terms are zero.

The different relationship matrices were calculated as follows: Let X = (x;;) be the
n X p matrix of SNP markers, where x;; equals the number of a chosen allele at the j-th locus
for the i-th genotype (so x;; = 0,1 or 2). Let p; be the allele frequency of the j-th marker. We
defined the additive design matrix W = (w;;) by setting w;; = x;; — 2p;. Then the additive

ww'

23k pr(1-pg)’

model (41). Next, we defined the n X p dominance design matrix D = (d;;) as follows (52):

relationship matrix is G, = which is the same as in the standard G-BLUP

( 2D12D22 .
— 0 ) lfxij =0
4
dij = 1 —pl‘;pzz, ifx; =1
2p11P12 .
k_ 9 , lfxij =2

where 0 = py; + P2 — (P11 — P22)%. Then the dominance relationship matrix is G, =
nDD' /tr(DD"). Here tr denotes the trace of a matrix, i.e., the sum of all diagonal elements.
The epistatic relationship matrices were defined as follows: G, = G #G,, Goq = G, #G4, and
Gaa = Ga#G4, where # denotes the Hadamard product (element-wise product) of matrices.
The above model considered additive (A), dominance (D) and all first-order digenic epistatic
effects (AA, AD and DD). We also considered reduced models which only include A (which
is the same as the standard G-BLUP), A+AA, A+D+AA, or A+D+AA+AD.

The G-BLUP model was also used for the metabolome-based hybrid prediction and
joint genome- and metabolome-based hybrid prediction. The metabolome-based hybrid
prediction corresponds to the above outlined model exclusively focusing on the additive part:

y=1at+ gau + e,
with the additive relationship matrix defined as one minus the Euclidean distance matrix
calculated by the metabolomic profiles of each parental line.

For joint genome- and metabolome-based hybrid prediction the model is:
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Y =1alt+ Gam + Gas + gas + e,
with g, denoting the additive effects estimated based on metabolomic profiles, and g,5 and
Jas are the additive and dominance effects of SNP markers, respectively. Standard deviations
of the prediction accuracies were estimated using a bootstrap procedure. All the above models
were implemented using the R package BGLR (53).

Bayesian model (Bayes Cn)
The Bayes Crn approach has been previously described for additive effects (42), extended
towards additive and dominance effects, and implemented for hybrid wheat prediction (20).
The model for Bayes Cr including additive and dominance effects is defined as:

Y=1,u+2,6,a+Zp8,d + e,

where y is the vector of phenotypic records, 1,, is an n-dimensional vector of ones and
n is the number of hybrids, u refers to the mean, Z, and Z,, are n X m design matrices for the
additive and dominance effects of the markers, where m refers to the number of markers. The
elements of the element of Z, is 0, 1, 2, and 0, 1 for Z,. While a = (a,a,, ...an)" and
d = (dy,dy, ...d,,)T are vectors of length m, a; and d; denoted the additive and dominance
effects for i-th marker. e = (ey, e, ...e,)" is a vector of length n, and e; is the residual for j-th
hybrid. The indicator parameters §, and 6, before the marker effect are 1 or 0 denoting
whether the marker effect is included or discarded in the model, respectively.

The prior distribution for the marker effects are a;~N (0,02 ), d;~N(ug4, 05 ), with
Ug having a prior distribution N (y, F /mp), while y represent the anticipated size of
dominance effects, and m,, is the anticipated number of markers that has contribute to the
dominance effect. For the residual e, we assumed a prior distribution e~N (0,52 ). The prior
distribution of variances are all assumed to has scaled inverse Chi-square distributions
OZ~VaSZXv2, 04~VaSixvl, and 02~v,SZx;2, respectively. The indicator parameter
0, with probability m,

1, with probability 1 — my’ while the

8 (9 =aord), has a prior distribution 5, ~f

parameter 7, (g = a or d) has its own prior uniform distribution 7,~U(0,1). All the
unknown parameters are random draws from the full conditional densities by a special
Markov Chain Monte Carlo (MCMC) algorithm called Gibbs sampling. The detail of MCMC
algorithm for Bayes Crn has been outlined in detail elsewhere (20). For the convenience of
reader, we give a short summary of the Gibbs sampling with the full conditional distribution
of all unknown parameters used in the algorithm.

Gibbs sampling:

17 (y—2Z484a-2Zpdad) 9%
n "n

Step 1: Sample the overall mean: u ~ N ( ).

Step 2: Sample the variance of residual and additive effects from inverted-chi-square
distributions o2 ~ (e"e + v SS)xy%, and oF ~ (a”a + vSZ) Xy 2em, respectively.
Step 3: Sample the expected mean and variance of the dominance effects

1 d+ym 2 _ .
a ~ N2 00y and 0 ~ [(d = 10)" (d = 4e) + VaSE125oms respectively.

m+mp m
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2
Step 4: Sample the additive effects from full conditional distribution a; ~ N(@;, %) with a; =

ZZ-(ZAiai'l-e) ~ T O'g . . ..
————+and 6; = Z,.Z,. +—, while Z,. refers to the i-th column of Z,. The additive
0; A~ A; o-g i

effect a; was accepted with probability ﬁ. Here, p,; was the ratio of likelihood with
—ita a;’ta

84, = 0and 64, = 1.
- 2
Step 5: Sample the dominance effects from the full conditional distribution d; ~ N (di,%
Zgi(ZDidi+e)+MdZ—§ o2
4 and 7j; = Zgl.ZDi + 7‘; Zp, refers to the i-th column of Z;, and
d

with d; = -
l

d; was only accepted with probability #ﬁ;m{ Here, pg, was the ratio of likelihood for
84, = 0and 64, = 1.

Step 5: Sample the m; (g =aord) used for the next iteration with a Beta
distribution my~Beta(l,m — 8,8, + 1,5, 6, + 1).

The above sampling process was repeated 20,000 times, the first 2,000 results were used as
burn in. The estimates of u, a, d, 6,, and &, are denoted as /i, @, d , Sa, and Sd. The
performance of the hybrids in the test set was predicted as: Y; = 1,1 + Z,.8,8 + Zp84d,
while the Z,; and Z), are design matrices for the additive and dominance effects of the
hybrids from the test set.
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