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Supplementary Tables 

Table S1 Detailed description of the 135 wheat parental lines for grain yield (GY, Mg ha-1), 

1000-kernel weight (TKW, g), gluten content (GC, %), kernel hardness (KH), protein content 

(PC, %), sedimentation volume (SV), starch content (SC, %), test weight (TW, g), brown rust 

severity (BR, scale 1-9), Fusarium head blight severity (FH, scale 1-9), powdery mildew 

severity (PM, scale 1-9), Septoria tritici blotch severity (ST, scale 1-9), and yellow rust 

severity (YR, %), frost tolerance (FT, scale 1-9). 

Genotype Code LP1 GCA2 TKW GC KH PC SV SC TW BR FH PM ST YR  FT 

WS-001 F001 10.0 0.20 44.9 26.3 46.8 12.0 44.0 67.3 76.1 1.4 3.7 2.7 4.2 9.7 7.2 

KWS-002 F002 9.5 -0.11 44.4 28.0 51.1 12.6 52.8 68.6 76.2 2.0 3.2 3.0 3.9 7.0 7.2 

KWS-003 F003 10.1 0.19 45.9 25.6 53.5 11.9 46.2 68.7 76.9 3.0 4.0 2.1 2.7 6.4 5.3 

KWS-004 F004 9.8 -0.22 41.8 25.0 39.7 11.8 36.0 69.4 77.5 0.9 4.3 3.0 5.3 31.1 6.7 

KWS-005 F005 9.3 -0.18 48.8 28.0 55.1 12.7 55.9 68.9 79.2 4.1 4.6 2.7 4.1 12.9 3.8 

KWS-006 F006 10.5 0.29 45.0 24.6 45.6 11.6 37.1 68.8 73.6 0.5 5.6 1.8 5.4 15.7 7.1 

KWS-007 F007 9.8 0.07 46.5 27.1 53.9 12.2 34.2 68.2 75.9 4.4 5.0 3.2 5.9 6.5 6.8 

KWS-008 F008 9.6 0.02 42.3 25.9 61.5 12.0 30.9 68.7 72.8 3.2 4.7 2.8 5.4 9.3 7.1 

KWS-009 F009 9.7 -0.09 42.7 26.8 40.2 12.2 32.7 67.0 74.5 1.6 4.9 2.4 3.3 6.8 6.6 

KWS-010 F010 9.5 -0.01 40.2 28.6 49.3 12.5 51.2 66.8 75.6 1.7 3.9 1.5 4.2 10.2 7.0 

KWS-011 F011 9.7 -0.05 44.3 28.6 37.1 12.6 52.3 66.4 76.7 1.3 4.6 2.4 4.6 10.1 7.4 

KWS-012 F012 9.8 0.34 43.8 26.0 47.5 11.8 28.2 69.1 71.9 2.0 4.1 2.0 4.5 7.7 6.9 

KWS-013 F013 9.4 0.00 42.0 27.5 38.2 12.7 36.6 69.3 75.5 0.9 5.1 2.0 5.3 28.0 6.9 

KWS-014 F014 9.7 0.11 39.5 25.6 42.5 12.0 33.6 68.8 73.7 1.3 4.4 2.1 3.9 24.0 6.1 

KWS-015 F015 9.3 -0.10 46.0 27.4 43.5 12.4 40.5 66.4 74.8 3.3 3.6 1.5 4.8 6.5 4.7 

KWS-016 F016 9.9 0.07 41.3 27.5 42.1 12.2 38.1 68.1 76.0 4.5 5.3 1.5 4.8 8.2 6.3 

KWS-017 F017 9.5 -0.08 43.6 27.1 23.7 12.2 43.8 69.4 76.8 2.3 4.3 2.1 4.1 6.5 6.2 

KWS-018 F018 9.1 -0.18 44.7 28.8 40.9 12.7 40.2 67.3 72.4 4.1 5.0 1.4 4.8 7.0 6.9 

KWS-019 F019 8.4 -0.51 49.8 33.2 44.2 14.0 58.7 67.1 78.0 2.7 3.4 3.3 5.1 8.4 7.7 

KWS-020 F020 10.4 0.25 45.6 29.2 39.9 12.5 48.2 67.6 74.6 2.4 4.9 3.8 3.1 9.8 3.9 

KWS-021 F021 9.6 -0.16 46.8 27.7 29.5 13.0 45.8 67.7 77.5 1.5 4.3 3.9 5.6 8.2 6.1 

KWS-022 F022 9.7 0.17 42.3 26.9 37.9 12.2 41.9 68.6 75.5 1.1 4.3 1.8 3.9 20.3 5.7 

KWS-023 F023 9.3 -0.04 43.3 29.6 50.6 13.0 56.7 68.3 78.0 1.8 5.8 3.5 3.5 6.5 5.7 

KWS-024 F024 9.9 0.00 49.0 27.5 57.4 12.2 34.9 68.2 77.5 1.7 3.9 3.9 3.8 7.8 8.2 

KWS-025 F025 9.6 0.04 45.4 26.3 20.8 12.3 35.4 68.0 73.9 1.9 3.9 3.1 2.9 6.7 7.8 

KWS-026 F026 9.7 -0.03 42.1 28.5 34.3 13.1 46.6 68.5 76.2 0.9 5.3 1.9 4.5 9.9 7.6 

NOS-001 F027 9.0 -0.38 44.1 26.3 44.7 12.6 38.4 68.3 72.9 4.4 5.1 1.6 5.1 5.0 6.8 

NOS-002 F028 9.7 -0.10 41.9 25.7 37.3 11.9 31.0 68.4 73.0 1.0 5.5 1.9 4.0 6.9 3.5 

NOS-003 F029 9.4 -0.07 42.3 31.9 51.7 13.6 54.1 66.4 73.2 1.0 5.9 2.0 2.7 20.0 6.5 

NOS-004 F030 9.4 -0.02 45.3 27.8 51.9 12.6 47.6 68.1 74.8 3.3 4.3 2.9 5.1 17.6 4.6 

NOS-005 F031 9.3 -0.25 41.8 28.4 45.6 13.0 52.1 66.8 74.4 2.1 4.2 1.9 3.3 47.8 7.3 

NOS-006 F032 10.0 0.07 43.2 27.7 57.9 12.4 53.1 68.0 71.9 5.2 5.3 1.9 5.5 10.0 6.7 

NOS-007 F033 9.4 -0.11 45.8 28.4 32.8 12.8 43.7 68.5 74.2 2.3 4.1 1.9 5.1 10.4 7.2 

NOS-008 F034 9.4 0.00 41.8 29.9 38.2 13.0 37.6 66.5 76.6 4.8 4.2 4.3 4.2 9.8 5.0 

NOS-009 F035 9.4 -0.11 50.1 31.3 45.3 13.4 58.1 66.5 77.0 2.5 4.9 2.9 4.4 6.4 5.4 

NOS-010 F036 9.5 -0.17 39.8 27.1 38.3 12.6 49.4 67.5 75.0 1.3 4.3 2.1 5.2 21.7 5.4 

NOS-011 F037 9.7 0.09 46.6 27.4 56.0 12.2 46.0 68.7 75.1 2.1 3.8 3.0 4.1 6.6 6.8 
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Genotype Code LP1 GCA2 TKW GC KH PC SV SC TW BR FH PM ST YR  FT 

NOS-012 F038 8.3 -0.15 45.7 29.1 49.6 13.2 49.0 68.3 75.6 3.7 4.2 2.0 6.4 5.3 6.3 

NOS-013 F039 10.1 0.15 42.7 27.9 54.2 12.3 45.0 68.1 76.9 1.4 3.2 1.2 4.0 5.1 2.8 

NOS-014 F040 9.3 -0.23 41.3 26.5 35.2 11.9 37.0 68.0 73.0 1.0 4.7 3.0 6.2 6.6 4.9 

NOS-015 F041 10.0 0.15 41.1 27.0 55.1 11.8 40.5 69.4 75.8 3.2 3.7 2.4 3.4 6.7 3.9 

NOS-016 F042 9.7 0.04 43.3 26.9 47.4 12.1 30.1 67.4 76.5 1.0 3.1 1.3 3.8 16.1 5.2 

NOS-017 F043 9.6 -0.11 51.8 26.2 40.3 11.9 36.6 68.9 72.5 1.4 5.1 2.5 6.0 4.9 4.7 

NOS-018 F044 10.0 0.20 44.3 29.0 49.2 12.7 50.6 68.2 76.5 1.3 3.7 2.6 5.4 6.8 4.4 

NOS-019 F045 9.5 -0.06 43.0 25.9 45.1 11.9 44.7 68.4 77.2 2.6 3.2 3.4 4.0 6.8 5.6 

NOS-020 F046 10.0 0.08 45.2 26.7 36.8 12.1 30.7 68.1 75.4 1.5 4.7 1.3 2.4 6.7 2.8 

NOS-021 F047 9.9 0.04 45.6 25.6 56.1 11.7 41.3 68.9 75.2 1.3 3.4 2.3 2.5 5.0 5.0 

NOS-022 F048 9.6 -0.34 46.3 28.5 32.7 12.8 39.0 67.8 75.1 1.5 4.4 2.2 3.9 6.6 3.0 

NOS-023 F049 9.7 -0.02 41.9 26.2 35.9 11.9 45.4 68.9 76.6 1.7 3.5 2.2 4.5 4.7 2.4 

NOS-024 F050 9.6 0.00 45.8 28.1 46.5 12.3 43.2 67.4 75.2 3.1 3.6 3.1 3.8 10.3 3.4 

NOS-025 F051 9.4 -0.24 47.4 26.4 34.9 12.3 38.0 69.0 74.7 1.3 4.9 2.6 4.6 6.8 4.6 

NOS-026 F052 9.7 -0.12 39.4 30.2 44.5 12.9 38.5 67.1 78.1 1.4 3.8 1.8 2.7 6.7 3.6 

NOS-027 F053 9.2 -0.24 42.4 28.6 44.2 13.0 49.5 67.4 74.0 1.9 4.2 1.7 4.7 8.0 4.2 

NOS-028 F054 8.9 -0.30 41.1 27.8 45.4 13.0 44.7 67.4 76.8 1.7 3.0 2.3 3.5 6.5 7.3 

NOS-029 F055 8.8 -0.40 40.0 30.3 39.6 13.5 46.1 67.5 76.1 2.4 3.7 1.5 4.2 5.1 4.0 

NOS-030 F056 9.1 -0.10 45.1 25.0 52.3 11.6 44.7 69.3 78.3 2.2 5.2 2.0 4.5 6.7 5.7 

NOS-031 F057 9.6 -0.07 46.3 25.7 49.8 12.0 49.0 69.2 75.9 2.2 4.5 2.3 5.7 24.1 7.6 

NOS-032 F058 9.9 -0.03 43.3 27.7 43.7 12.4 42.5 67.7 74.9 3.8 4.0 2.2 4.8 10.2 5.9 

NOS-033 F059 9.9 0.02 45.6 29.1 48.3 12.7 49.2 68.2 76.4 1.1 4.6 1.7 2.9 34.4 6.2 

NOS-034 F060 10.3 0.27 45.7 27.3 47.6 12.2 51.6 69.6 77.1 2.6 3.9 2.1 2.5 8.3 5.6 

NOS-035 F061 10.1 0.14 38.9 26.3 60.1 12.0 45.0 69.2 79.7 3.5 3.0 2.7 3.3 8.6 3.6 

NOS-036 F062 9.7 0.13 43.7 29.1 47.2 12.9 49.7 67.2 79.2 4.0 3.4 1.7 3.8 12.2 1.7 

NOS-037 F063 9.3 -0.22 45.7 28.3 49.5 12.9 57.0 68.7 77.7 2.2 3.9 2.5 5.0 8.6 3.2 

NOS-038 F064 9.9 0.06 44.6 26.2 51.0 12.1 41.9 68.2 77.8 3.2 3.3 2.4 4.2 6.4 3.0 

NOS-039 F065 10.4 0.19 48.3 27.0 48.9 12.3 39.0 68.7 76.9 2.4 3.8 3.0 2.7 10.7 5.5 

NOS-040 F066 9.7 0.05 41.4 28.5 59.4 12.5 51.6 68.5 74.7 2.9 4.1 2.1 3.3 4.9 6.6 

NOS-041 F067 10.3 0.16 48.8 27.7 45.2 12.2 33.6 67.0 73.8 5.0 3.9 1.5 4.2 6.5 3.5 

NOS-042 F068 9.3 0.00 42.8 26.4 44.4 11.9 35.8 66.8 66.6 2.2 6.5 1.3 2.7 4.3 4.5 

NOS-043 F069 9.3 -0.14 40.8 27.9 54.0 12.6 46.7 68.3 77.5 3.8 4.6 4.6 3.4 7.7 3.5 

NOS-044 F070 9.9 0.01 42.7 28.3 50.3 12.5 38.4 66.5 70.5 1.2 5.7 1.9 3.4 17.0 5.2 

NOS-045 F071 10.0 0.16 43.1 27.5 39.1 12.4 37.2 68.6 76.7 1.6 5.7 1.9 3.7 30.3 3.6 

NOS-046 F072 9.3 -0.07 48.8 29.0 56.2 13.1 49.2 68.0 77.7 3.7 4.8 1.9 4.4 6.2 7.2 

NOS-047 F073 9.8 -0.07 39.4 27.1 53.5 12.1 51.0 68.2 77.2 3.1 4.4 3.8 5.3 9.3 7.6 

NOS-048 F074 9.6 0.02 43.0 26.9 49.1 12.0 46.9 68.6 76.0 1.7 5.1 2.5 3.9 10.0 4.9 

NOS-049 F075 9.8 0.10 44.0 29.1 38.5 12.6 37.3 67.8 76.3 1.8 3.8 3.3 3.8 6.9 5.2 

NOS-050 F076 9.7 -0.02 44.9 27.3 45.3 12.2 38.2 68.1 73.7 2.5 4.9 2.2 3.1 12.8 5.4 

NOS-051 F077 9.3 0.07 46.8 26.7 47.0 12.5 46.1 69.2 76.3 2.4 3.4 2.4 4.6 6.9 3.9 

NOS-052 F078 8.0 -0.33 50.5 28.2 55.4 12.9 46.9 68.8 75.2 2.7 4.8 2.0 4.3 6.5 7.4 

NOS-053 F079 9.3 -0.03 46.0 30.1 43.7 12.9 33.6 66.5 71.8 2.6 4.8 1.3 4.0 7.0 7.4 

NOS-054 F080 9.6 0.01 43.4 28.5 40.5 12.7 51.4 67.5 76.6 2.4 4.5 1.9 3.1 17.9 7.3 

NOS-055 F081 9.1 -0.43 43.0 28.1 42.8 12.9 50.7 67.7 76.6 3.8 3.4 2.6 2.8 7.9 4.2 

NOS-056 F082 9.7 0.03 47.8 29.7 58.3 12.9 47.3 67.7 75.7 4.1 3.7 3.6 3.7 13.4 5.2 
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Genotype Code LP1 GCA2 TKW GC KH PC SV SC TW BR FH PM ST YR  FT 

NOS-057 F083 10.0 0.21 42.2 27.4 42.7 12.5 54.8 69.2 76.4 2.4 4.3 2.0 3.4 11.8 4.7 

NOS-058 F084 9.9 0.12 47.5 28.9 54.9 12.7 48.1 67.1 75.5 3.5 3.4 3.6 4.1 11.8 6.8 

LG-001 F085 10.0 0.03 49.9 28.4 57.4 12.7 51.5 68.2 78.1 2.6 5.5 3.6 4.5 13.0 4.7 

LG-002 F086 10.2 0.15 43.9 26.2 40.0 11.9 33.9 68.2 72.7 1.1 5.6 2.5 2.3 6.9 5.9 

LG-003 F087 9.5 -0.25 48.1 28.1 56.8 12.9 47.9 68.3 76.4 3.4 3.9 3.0 4.3 10.8 4.9 

LG-004 F088 9.8 -0.08 52.9 27.6 54.9 12.4 44.5 69.1 77.6 2.7 4.6 3.1 4.7 13.7 6.6 

LG-005 F089 9.6 0.07 43.5 26.8 53.9 12.5 45.7 67.8 76.5 2.5 4.4 2.7 5.1 10.1 7.9 

LG-006 F090 9.9 0.19 47.3 28.2 42.8 12.8 49.2 66.9 77.8 3.3 4.4 2.5 3.4 18.8 5.1 

LG-007 F091 10.1 0.07 46.6 26.6 46.8 12.6 50.7 68.4 77.1 3.7 3.1 3.1 2.7 6.1 5.9 

LG-008 F092 8.6 -0.15 45.6 27.0 47.5 12.2 44.4 69.0 75.5 3.0 3.6 2.5 5.6 8.2 8.6 

LG-009 F093 9.8 -0.11 44.1 27.5 43.2 12.3 42.6 68.4 73.6 2.6 4.1 1.6 4.4 5.3 8.0 

LG-010 F094 9.2 -0.02 48.5 27.1 45.0 12.3 50.0 68.1 75.1 3.2 6.1 2.3 6.0 10.8 5.8 

LG-011 F095 9.6 0.05 44.7 26.0 34.7 12.0 28.4 67.9 70.2 3.0 5.0 3.1 4.4 5.3 7.0 

LG-012 F096 9.4 0.15 44.1 26.5 43.2 12.0 39.8 68.7 73.5 4.2 4.6 1.7 4.7 8.1 6.8 

LG-013 F097 10.3 0.47 50.0 25.9 36.0 12.0 31.5 68.5 73.8 1.2 5.0 1.5 3.1 21.4 7.3 

LG-014 F098 10.1 0.16 49.4 27.6 52.5 12.5 33.0 66.7 75.1 1.3 4.8 1.7 1.9 6.4 4.2 

LG-015 F099 10.1 0.27 42.9 26.1 47.3 11.7 40.6 68.5 72.4 1.2 5.4 1.5 4.4 15.4 3.9 

LG-016 F100 10.1 0.17 49.8 25.6 51.8 11.8 41.5 68.4 76.3 1.4 4.0 2.9 3.5 10.4 5.1 

LG-017 F101 10.4 0.29 49.3 25.1 45.4 11.7 41.1 69.2 75.9 1.0 4.8 3.4 2.8 12.3 7.1 

LG-018 F102 10.4 0.41 52.4 27.7 46.6 12.1 43.5 69.0 78.6 2.1 3.9 1.5 3.4 6.5 3.0 

LG-019 F103 9.8 0.05 48.1 26.9 53.1 12.5 46.8 69.5 76.8 2.4 4.1 1.8 3.8 9.8 6.4 

LG-020 F104 10.0 0.13 47.2 26.2 53.1 12.1 48.6 68.8 79.2 2.0 4.3 2.2 5.2 8.6 5.5 

LG-021 F105 10.0 0.24 45.3 26.2 48.1 11.9 44.1 68.2 77.7 3.8 3.7 2.3 4.3 19.7 5.9 

LG-022 F106 10.0 0.07 48.5 26.0 45.7 11.9 42.5 69.5 76.7 2.2 4.7 1.6 3.0 61.6 5.1 

LG-023 F107 9.8 0.07 46.3 28.3 42.3 13.0 58.9 68.5 76.3 2.4 4.0 3.5 3.3 6.5 4.2 

SW-001 F108 8.9 -0.15 54.1 29.1 40.8 13.2 48.7 67.8 75.7 2.9 3.2 1.8 4.5 5.0 5.1 

SW-002 F109 9.5 -0.02 42.6 27.9 50.3 12.8 42.2 67.7 78.1 4.4 3.5 2.5 4.3 15.7 3.2 

SW-003 F110 9.0 -0.16 44.4 28.1 46.4 13.1 51.7 67.8 78.0 2.6 3.8 2.8 4.5 10.1 3.4 

SW-004 F111 9.7 -0.12 45.2 28.9 50.5 12.8 52.1 68.5 76.3 3.6 3.6 2.7 2.9 11.6 3.5 

SW-005 F112 9.8 -0.07 45.6 27.3 56.9 12.0 40.3 68.6 73.7 1.6 5.4 4.2 3.4 14.1 6.2 

SW-006 F113 9.6 -0.01 46.1 29.2 58.0 12.8 54.8 66.4 75.6 1.9 4.9 2.6 4.9 6.6 7.3 

SW-007 F114 9.8 0.07 48.7 29.3 44.0 13.0 54.2 67.4 76.1 3.9 4.7 2.9 3.5 7.7 2.2 

SW-008 F115 10.4 0.30 43.9 28.3 48.3 12.6 48.0 67.3 76.0 6.4 3.5 1.4 3.2 6.7 3.6 

SW-009 F116 9.1 0.00 50.0 27.6 42.7 12.8 51.3 67.2 78.2 2.3 4.8 1.8 2.9 11.4 3.3 

SW-010 F117 9.2 -0.13 47.5 29.4 43.5 13.7 51.0 66.8 77.4 3.0 3.5 1.8 3.7 6.8 6.8 

SW-011 F118 9.9 -0.01 47.8 28.4 41.8 12.3 40.1 67.2 75.9 1.6 4.5 2.8 4.9 12.2 7.0 

SW-012 F119 9.8 0.12 44.5 28.8 39.9 12.9 33.5 67.6 73.3 1.6 5.2 1.6 2.6 11.1 5.4 

SW-013 F120 10.2 0.13 49.1 26.2 54.3 11.9 45.4 69.0 76.2 4.6 4.4 3.0 3.3 7.1 3.6 

NOS-059 M001 9.9 -0.01 47.5 27.1 61.4 11.9 47.4 68.8 77.5 3.9 3.7 2.5 3.4 5.2 3.4 

NOS-060 M002 9.8 -0.04 48.6 28.0 53.3 12.4 43.4 67.5 77.3 3.5 3.4 3.1 4.6 10.0 4.2 

NOS-061 M003 9.3 -0.20 43.2 27.4 47.1 12.2 48.6 67.8 75.3 2.9 4.3 3.4 3.6 6.8 4.3 

NOS-062 M004 9.6 -0.25 45.8 29.2 46.2 12.5 50.6 67.2 76.0 2.7 3.4 2.8 3.8 6.9 3.3 

NOS-063 M005 9.8 0.12 48.2 27.7 47.3 12.2 49.3 67.8 77.5 3.3 4.0 3.6 3.7 8.5 3.7 

NOS-064 M006 10.4 0.20 47.3 27.8 48.4 12.0 43.2 68.0 76.6 3.8 3.9 2.8 3.7 13.5 3.1 

NOS-065 M007 9.8 0.01 48.6 27.1 59.4 12.1 43.6 68.5 77.9 2.9 4.7 1.9 4.3 10.2 4.2 
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Genotype Code LP1 GCA2 TKW GC KH PC SV SC TW BR FH PM ST YR  FT 

NOS-066 M008 10.0 0.04 46.4 26.9 49.4 12.0 44.2 68.5 78.7 4.6 4.4 2.8 2.8 6.5 2.4 

NOS-067 M009 10.0 0.20 45.8 25.5 45.1 11.7 48.3 69.1 77.3 2.3 4.0 3.2 3.6 19.4 3.3 

NOS-068 M010 9.4 -0.06 43.2 26.6 59.5 11.9 37.8 68.7 78.2 1.3 3.3 3.0 4.3 60.0 4.9 

NOS-069 M011 10.1 -0.05 47.9 27.9 51.8 12.5 53.8 68.5 77.6 3.4 3.2 2.2 4.2 10.2 4.0 

NOS-070 M012 9.1 -0.13 42.5 27.6 49.4 12.4 44.5 69.1 76.1 3.5 3.5 2.6 4.6 12.7 3.3 

LG-024 M013 9.9 -0.01 45.7 27.4 50.6 12.3 48.5 68.1 76.7 2.7 4.0 2.5 3.2 8.9 6.3 

LG-025 M014 10.1 0.13 51.3 26.2 55.1 12.0 34.0 69.6 77.0 2.8 3.3 1.9 4.1 13.4 5.2 

LG-026 M015 10.1 0.06 46.0 26.6 38.9 11.8 29.8 68.3 74.0 2.5 3.4 2.4 3.7 16.9 3.6 
1 LP refers to the line per se performance 
2 GCA refers to the general combining ability effects of the lines 

Table S2. Variance of genotypes (σ²G), genotypes times environment interactions (σ²GxE), and 

of the residuals (σ²e) as well as broad-sense heritability estimates (h²) for grain yield (Mg ha-1) 

evaluated in 11 environments. The hybrid performance was decomposed into general (GCA) 

and specific combining ability (GCA) effects 

Source Grain yield 

Lines 

σ²G 0.14** 

σ²G×E 0.22** 

h² 0.79 

Hybrids 

σ²G 0.08** 

σ²GCA 0.03** 

σ²SCA 0.02** 

σ²G×E 0.12** 

σ² GCA×Et 0.05** 

σ²SCA×E 0.03** 

σ²e 0.24 

h² 0.73 
** Significantly different from zero at 0.01 level of probability 
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Table S3 Summary of whole-genome prediction accuracies with standard deviations for six 

methods evaluated with five-fold cross validation. T2 test sets included hybrids sharing both 

parental lines, T1 test sets comprised hybrids sharing one parental line, and T0 test sets 

contained hybrids having no parental line in common with the hybrids in the related training 

sets 

Model T0 T1 T2 

GBLUP (A1) 0.31±0.08 0.59±0.05 0.88±0.05 

GBLUP (A+D2) 0.32±0.08 0.65±0.05 0.89±0.05 

GBLUP (A+D+AA3) 0.32±0.09 0.65±0.05 0.90±0.05 

GBLUP (A+D+AA+AD4) 0.33±0.09 0.66±0.05 0.90±0.05 

GBLUP (A+D+AA+AD+DD5) 0.31±0.09 0.66±0.05 0.91±0.04 

Bayes-Cπ (A+D) 0.32±0.08 0.66±0.05 0.90±0.05 
1, 2, 3, 4, 5 additive, dominance, additive × additive, additive × dominance, and dominance × 

dominance effects, respectively. 

 

 

Table S4 Correlation among kinship matrices of additive (A), dominance (D) and respective 

digenic epistatic (AA, AD, DD) variance components (VC) 

VC A D AA AD DD 

A 1.00  0.06  0.70  0.12  0.09 

D  1.00 0.08  0.35  0.68 

AA   1.00  0.06  0.11 

AD    1.00  0.39 

DD     1.00 
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Table S5 Variance components of genotypes (σ²G), genotypes times environment interactions 

(σ²GxE), and of the residuals (σ²error) as well as broad-sense heritability estimates (h²) for the 

metabolites used to examine the 135 parental wheat lines 

Metabolite σ²G σ²GxE σ²error h² 
Oxalic-acid 0.11*** 0.02 0.78 0.58 
L-Leucine 0.11*** 0.17*** 0.88 0.44 
L-Valine 0.08*** 0.11*** 0.36 0.54 
Ethanolamine 0.04* 0.18*** 0.46 0.28 
Norleucine 0.06*** 0.13*** 0.37 0.44 
Isoleucine 0.07*** 0.12*** 0.30 0.49 
L-Proline 0.16*** 0.27*** 0.45 0.55 
Glycine 0.09*** 0.06*** 0.41 0.61 
Glyceric_acid 0.08*** 0.11*** 0.42 0.52 
Unknown_1 0.10* 0.30*** 1.41 0.31 
Threonic_acid-1_4-lactone 0.05* 0.13*** 0.67 0.32 
L-Threonine 0.62* 4.72*** 1.48 0.26 
Pyroglutamic_acid 0.15*** 0.26*** 1.20 0.43 
Aspartic_acid 0.08*** 0.11*** 0.82 0.40 
Butanoic_acid_2-amino 0.08*** 0.13*** 0.84 0.41 
L-Glutamic_acid 0.11** 0.30*** 1.28 0.33 
L-Phenylalanine 0.11*** 0.12*** 0.80 0.49 
Pentose_I 0.12*** 0.23*** 0.91 0.42 
Pentose_alcohol_I 0.13*** 0.11*** 0.39 0.65 
Putrescine 0.16*** 0.19*** 0.57 0.59 
Pentose_alcohol_II 0.11*** 0.09*** 0.64 0.55 
cis-Aconitic_acid 0.34*** 0.96*** 1.79 0.42 
Lyxonic_acid 0.07*** 0.16*** 0.54 0.41 
Ornithin 0.07* 0.25*** 1.37 0.27 
D-Fructose 0.14* 0.59*** 1.82 0.28 
Citric_acid 0.17*** 0.24*** 0.83 0.52 
L-Arginine 0.49*** 0.25*** 1.02 0.74 
D-Galactose_I 0.14*** 0.14*** 0.59 0.58 
Quinic_acid 0.25*** 0.20*** 1.08 0.61 
Unknown_3 0.05* 0.23*** 0.45 0.28 
Hexose_II_b 0.42*** 0.38*** 1.18 0.64 
Pentose_alcohol_III 0.18*** 0.13*** 0.45 0.69 
L-Tyrosine 0.11** 0.32*** 1.01 0.36 
Oligo_II 0.08** 0.24*** 0.84 0.33 
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Supplementary Figures 

 

Fig. S1. (A) Broad-sense heritability estimates and (B) Violin plots of standardized best linear 

unbiased estimates for grain yield (GY, Mg ha-1), 1000-kernel weight (TKW, g), gluten 

content (GC, %), kernel hardness (KH), protein content (PC, %), sedimentation volume (SV), 

starch content (SC, %), test weight (TW, g), brown rust severity (BR, scale 1-9), Fusarium 
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head blight severity (FHB, scale 1-9), powdery mildew severity (PM, scale 1-9), Septoria 

tritici blotch severity (STB, scale 1-9), yellow rust severity (YR, %), frost tolerance (FT, scale 

1-9) and a weighted index (60% grain yield, 20% biotic and biotic stress severity, 20% 

quality) for the 1,604 hybrids and ten released varieties classified into four quality groups 

according to official variety testing in Germany. Number of environments in which the 

genotypes have been evaluated is given in brackets. (C) Distribution of hybrid performance 

for grain yield (Mg ha-1) evaluated in 11 environments in Germany. B refers to the 

performance of the best parental line and M to the mean performance of the 1,604 hybrids. 

The numbers 1 to 10 indicate the performance of different commercial checks: 1 = As de 

Coeur, 2 = Colonia, 3 = Kredo, 4 = Genius, 5 = Hybred, 6 = JB Asano, 7 = Julius, 8 = 

Tabasco, 9 = Tobak, and 10 = Tuerkis. LSD refers to the least significant difference at a 

significant threshold of P < 0.05. 
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Fig. S2. Relationship between the square root of the broad-sense heritability (h) for grain 

yield and the number of environments evaluated. The prediction ability is given as red 

horizontal line. 

 

Fig. S3. Pie chart of genetic components of variance (additive variance σ²A, dominance 

variance σ²D and respective epistatic variance components) estimated with Bayesian 

generalized linear regression. 

  



11 

 

 

Fig. S4. Principal component analyses of the 135 parental wheat lines fingerprinted with a 

90k SNP array. The color code reflects the membership to the heterotic groups depicted in 

Fig. 4. 

 

Fig. S5. (A) Distribution of midparent heterosis of the 1,604 hybrids, (B) association between 
Rogers’ distances estimated based on 17,372 SNPs and midparents heterosis for grain yield, 
and (C) association between Rogers’ distances and hybrid performance.  
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Supplementary Note 

a. Absence of genetically distinct subpopulations 

The presence of genetically distinct subpopulations impacts the implementation of cross 

validation scenarios for hybrid prediction and association mapping. We inspected the 

presence of subpopulations by using a complete linkage clustering method and observed 

absence of genetically distinct subpopulations with only minor influence of the breeding 

program from which the lines have been derived (Fig. Supplementary Note a-1). These 

findings are in accordance with previous observations for wheat lines adapted to Central 

Europe (17) and can be explained by the constant exchange of germplasm between breeding 

programs. 

 
Fig. Supplementary Note a-1. Associations among the 135 wheat inbred lines revealed by complete linkage 

clustering method based on Rogers’ distances among pairs of lines. Different colors refer to the origin of the 

inbred lines into breeding programs (red = KWS, blue = NOS, green = LG, yellow = SW). Labels marked with 

black triangles refer to males. 

 

b. Chess-board-like cross validation and reliability criterion revealed high-quality of 

the predicted hybrid performances for all 9,045 pairwise single crosses  

As in factorial mating designs relatedness between training and test set influences prediction 

accuracy, we followed previous suggestions (14) and sampled training sets consisting of 10 

out of 15 male and 80 out of 120 female parental lines as well as 610 hybrids derived from 

them. From the remaining hybrids, test sets with three successively decreasing degrees of 

relatedness to the training set were formed (Fig. Supplementary Note b-1). Test set T2 most 

closely related to the training set included only hybrids derived from the same parents as the 

hybrids that had been evaluated, while the less related test set T1 included hybrids sharing one 

parent with the hybrids in the training set and the least related test set T0 included only 

hybrids having no parents in common with the training set. For each test set, we used 100 

cross validations and estimated marker effects. The obtained marker effects were then used to 

predict the performance of the hybrids in the T2, T1, and T0 test sets. The prediction accuracy 

for each test set was estimated as the Pearson correlation coefficient between the predicted 

and the observed hybrid performances standardized with the square root of the heritability. 
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Fig. Supplementary Note b-1. Cross validation scenarios applied in our study. T2 test sets included hybrids 

sharing both parental lines, T1 test sets comprised hybrids sharing one parental line and T0 test sets contained 

hybrids having no parental line in common with the hybrids in the related training sets 

 

Cross validations are expected to deliver similar estimates of prediction accuracies 

compared to independent validations as highlighted in the context of QTL mapping (43). One 

important requirement, however, is that the cross-validation scenarios mimic the relevant 

relatedness patterns. Our study is based on 1,604 single crosses. Thus, the applied cross 

validation scenarios yield robust estimates for crosses between the female and male lines. 

Nevertheless, the question arises whether the findings of the T2 scenario can be safely 

expanded to the expected prediction accuracies for the intra-female and intra-male crosses. 

We observed absence of a population structure among the male and female lines (Fig. 

Supplementary Note a-1), which clearly suggests that the prediction accuracies observed 

between female and male lines are comparable to those observed for intra-female and intra-

male crosses. 

To further confirm that the prediction accuracies observed between female and male 

lines are comparable to those observed for intra-female and intra-male crosses, we assessed 

prediction accuracy of particular individuals merely based on genotypic data using the 

reliability criterion (19). The reliability can be calculated via the GBLUP model, which is of 

the form ݕ ൌ 1ߤ  ܼ݃  ݁, where ݃ is the vector of genotypic values, ܼ is the 

corresponding design matrix and ݁ is the vector of residuals. We assume that ݃	~	ܰሺ0,  ,ଶሻߪܩ

where ܩ is the ݊ ൈ ݊ genomic relationship matrix (41), and ݁	~	ܰሺ0,  ଶሻ. The reliability ofߪ

the estimated genotypic value of the ݅௧ genotype was defined as the correlation between the 

true and estimated genotypic value: ݎ ൌ ሺݎܿ ݃, ො݃ሻ. To calculate it, we need to extract the 

coefficient matrix of the mixed model equations (44): 

ܥ ൌ 
ଵଵܥ ଵଶܥ
ଶଵܥ ଶଶܥ

൨ ൌ ቈ
݊ 1′ܼ

ܼᇱ1 ܼᇱܼ  ଶߪ/ଶߪଵିܩ
. Let ቂܥ

ଵଵ ଵଶܥ

ଶଵܥ ଶଶܥ
ቃ be a generalized inverse 

matrix of ܥ. Then, the reliability can be calculated as ݎ ൌ ට1 െ
ௗఙ

మ

ఙ
మ , where ݀ is the diagonal 

element in ܥଶଶ corresponding to the ݅௧ genotype. Note, that ݀ߪଶ ൌ ሺܧܵ ො݃ሻଶ ൌ ሺ݃ݎܽݒ െ
ො݃ሻ is the squared standard error or the prediction error variance of ො݃	(44). We observed a 

similar distribution of the reliability criterion for the factorial crosses as compared to the intra-
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female and intra-male crosses (Fig. Supplementary Note b-2). Consequently, the prediction 

accuracies estimated based on the experimental data of the factorial crosses well approximate 

the prediction accuracy for all 9,045 pairwise single crosses.  

 
Fig. Supplementary Note b-2. Histograms of reliabilities estimated for the intra-female and intra-male hybrids as 

well as for the phenotyped and non-phenotyped single crosses between males and female lines 

c. Association mapping reveals absence of large effect QTL for grain yield  

We performed association mapping using the software ASReml-R 3.0 (45). and corrected for 

population stratification by fitting a polygenic effect for the breeding values of the parents, 

where the covariance was modelled using the kinship matrix estimated from the marker data.  

We also tested a model correcting for population structure with the kinship matrix and the 

first ten principal coordinates (Q+K model). We contrasted these approaches with a model not 

correcting for population stratification except considering a group effect (lines versus hybrids) 

using quantile-quantile plots. We compared the different models by plotting the observed 

versus the expected P-values (Fig. Supplementary Note c-1). Assuming that none of the SNPs 

is associated with the trait, the P-values are expected to follow the diagonal. The distribution 

is expected to deviate from the diagonal, however, if true marker-trait associations are present 

causing a bulge at the left side of the plot. As true marker-trait associations are not known, the 

true distribution of P-values cannot be predicted but strong bulges clearly indicate inflated 
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false-positive rates. Inspecting the quantile-quantile plots for our data revealed that population 

stratification had to be considered through modelling the kinship matrix for the lines and 

hybrids but correcting for population structure with principal coordinates was not required 

(Fig. Supplementary Note c-1).  

 
Fig. Supplementary Note c-1. Quantile-quantile plots for association mapping for additive and dominance effects 

without correction for population structure (Null model) and correcting for population structure with a kinship 

matrix (Kinship model) and the first ten principal coordinates (Q+K model). 

 

Presence of large effect QTL was examined by studying the prediction accuracy of the 

association mapping applying cross validations. In the cross validations, we split the total data 

set into training and test sets as outlined in the material and methods part (Fig. Supplementary 

Note b-1). We used 100 cross validations and estimated marker effects of the QTL identified 

in the genome-wide association mapping scan in each cross validation run within the training 

sets. We applied the association mapping model outlined above correcting for population 

stratification with a kinship matrix. The effects for the detected QTL were estimated with a 

linear model and then used to predict the performance of the hybrids in the T0 test sets. The 

prediction accuracy for each test set was estimated as the Pearson correlation coefficient (r) 

between the predicted and the observed hybrid performance standardized with the square root 

of the heritability. We observed for a wide range of significance values prediction accuracies 

close to zero despite detecting a substantial number of QTL in every scenario (Fig. 

Supplementary Note c-2). These findings clearly suggested absence of large effect QTL for 

grain yield in our study. 
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Fig. Supplementary Note c-2. Cross validated accuracies of prediction of association mapping for grain yield in 

the T0 scenario with hybrids in the test sets having no parents in common with the hybrids in the training set. 

Number in parenthesis refers to the average number of marker-trait associations detected in the 100 training 

populations.  

 

d. Efficient designs of training populations 

We evaluated the possibility to optimize the design of the training population to predict grain 

yield performance of related T2 hybrids using the G-BLUP(A+D) approach in combination 

with 100 cross validations. We compared four different designs of the training population: (1) 

A nested factorial mating design with 120 hybrids (single crosses of each male line with eight 

female lines; Fig. Supplementary Note d-1A). (2) An incomplete factorial design comprising 

360 hybrids (single crosses among each female line with 3 male lines, there are 2 overlapping 

male parents in each neighboring single cross; Fig. Supplementary Note d-1B) with balanced 

missing data structure. (3) Top-cross design comprising 396 hybrids resulting out of crosses 

among all 120 females with three randomly selected male tester lines and among all male 

lines crossed with three randomly selected female tester lines (Fig. Supplementary Note d-

1C). (4) As standard scenario we implemented an incomplete factorial design with random 

missing hybrid combinations using two population sizes of 120 and 360 hybrids (Fig. 

Supplementary Note d-1D). For all four scenarios, we studied the prediction accuracy 

including and excluding the 135 parental lines in the training populations. Our findings 

clearly showed that a drastic reduction in training population size from 1,604 to 360 hybrids is 

possible without substantially reducing the prediction accuracy (Table Supplementary Note d-

1). Interestingly, a random sampling of 360 hybrids yielded equal or higher prediction 

accuracies than targeted designs such as the nested factorial, balanced incomplete factorial, or 

top-cross designs (Table Supplementary Note d-1). 
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Table Supplementary Note d-1. Prediction accuracy (rG) and its standard deviation (SD) for four different 

designs of the training population including and excluding the 135 parental lines 

Design 
Size of training 

population 
rG SD(rG) 

Including parents    

Nested design 120 hybrids 0.78 0.02 

Balanced incomplete factorial design 360 hybrids 0.85 0.01 

Topcross design 396 hybrids 0.79 0.03 

Random design 120 hybrids 0.79 0.02 

Random design 360 hybrids 0.86 0.01 

    

Excluding parents    

Nested design 120 hybrids 0.62 0.05 

Balanced incomplete factorial design 360 hybrids 0.82 0.02 

Topcross design 396 hybrids 0.74 0.05 

Random design 120 hybrids 0.62 0.05 

Random design 360 hybrids 0.82 0.02 

 
Fig. Supplementary Note d-1. Four different designs of training populations: (A) Nested design, (B) Balanced 

incomplete factorial design, (C) Topcross design, and (D) Random design. 
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e. Implementation, performance and robustness of the developed simulated annealing 

algorithm as well as long-term success of the identified heterotic pattern 

We implemented a simulated annealing algorithm (46) to maximize the hybrid performance to 

search for heterotic groups. The details of the simulated annealing process are described as 

follows. Suppose we have a population of n parents ܮ ൌ ሼ݈ଵ, ݈ଶ, … , ݈ሽ, and we need to find the 

heterotic groups of size m ൫݉ ൏ ݊
2ൗ ,݉ ∈ ܰ	with	ܰ	referring	to	the	natural	numbers൯. For 

the simulated annealing method, we could define the state space as ߗ ൌ	 ൛ሺܩଵ, ଵܩଶሻหܩ ൌ

൛݈భ, ݈మ, … , ݈, ݅ଵ, ݅ଶ, … , ݅ ∈ ܰൟ,	ܩଶ ൌ ൛ ݈భ, ݈మ, … , ݈, 	݆ଵ, ݆ଶ, … , ݆ ∈ ܰൟ, ଵܩ ∩ ଶܩ ൌ ∅ൟ, 

where ܰ ൌ ሼ1,2, … , ݊ሽ, and the goal function is: ܨሺܩଵ, ଶሻܩ ൌ
ଵ

మ ∑ ∑ ݂ೠ,ೡ

௩ୀଵ


௨ୀଵ , where ݂, 

is the estimated performance of the hybrid generated by crossing ݈ with ݈ (݅, ݆ ∈ ܰ	and	݅ ്

݆). The annealing schedule is ܶ ൌ ܶ
ೌೣି

ೌೣିଵ
, where ܶ is the initial temperature, k is the cycle 

of iterations, and ݇௫ is the maximum cycle of iterations. We employed 

ܲሺܨሺܩଵ, ,ଶሻܩ ଵܩሺܨ
ᇱ , ଶܩ

ᇱሻ, ܶሻ ൌ ݉݅݊ ቊ1, ݁
ಷቀಸభ

ᇲ ,ಸమ
ᇲ ቁషಷሺಸభ,ಸమሻ

 ቋ as the acceptance probability function 

from state ሺܩଵ, ଵܩଶሻ to state ሺܩ
ᇱ , ଶܩ

ᇱሻ at temperature T, which was proposed elsewhere (46). 

The central steps of the simulated annealing algorithm are summarized as follows: 

Step1: Initializing all parameters. Set the initial values for temperature ܶ, the maximal 

iteration cycles ݇௫, and the restart threshold ݎ. Start from ݇ ൌ 0 and randomly sample 2m 

parents from L as the initial heterotic groups ሺܩଵ, ௨௧ܨ ଶሻ. Letܩ ൌ ,ଵܩሺܨ  ଶሻ. The parentsܩ

not chosen into the initial heterotic groups will form the “left set” ܶܨܧܮ ൌ ܮ െ ሺܩଵ ∪  .ଶሻܩ

Step 2: Let ൫ܩଵ,௦௧, ଶ,௦௧൯ܩ ൌ ሺܩଵ, ܨܧܮ ,ଶሻܩ ܶ௦௧ ൌ ௦௧ܨ and ,ܶܨܧܮ ൌ  .௨௧ܨ

Step 3: Let ݇ ൌ ݇  1, calculate T, randomly choose one parent ݈௧ from LEFT and one 

parent ݈௨௧	from ܩଵ ∪  ଶ, respectively, replace ݈௨௧ with ݈௧, and form the new stateܩ

ሺܩଵ
ᇱ , ଶܩ

ᇱሻ and the new “left set” LEFT´. 

Step 4: Calculate ܨሺܩଵ
ᇱ , ଶܩ

ᇱሻ, and accept the new state in the following ways: (a) If 

ଵܩሺܨ
ᇱ , ଶܩ

ᇱሻ  ,ଵܩሺܨ ଵܩଶሻ, accept the new state ሺܩ
ᇱ , ଶܩ

ᇱሻ, i.e., set ሺܩଵ, ଶሻܩ ൌ ሺܩଵ
ᇱ , ଶܩ

ᇱሻ, ܶܨܧܮ ൌ

௨௧ܨ ᇱ, andܶܨܧܮ ൌ ଵܩሺܨ
ᇱ , ଶܩ

ᇱሻ. Further, if ܨ௨௧  ,ଵ,௦௧ܩ௦௧, set ൫ܨ ଶ,௦௧൯ܩ ൌ

ሺܩଵ, ܨܧܮ ,ଶሻܩ ܶ௦௧ ൌ ௦௧ܨ and ,ܶܨܧܮ ൌ ଵܩሺܨ ௨௧. (b) Ifܨ
ᇱ, ଶܩ

ᇱሻ  ,ଵܩሺܨ  ଶሻ, accept theܩ

new state ሺܩଵ
ᇱ , ଶܩ

ᇱሻ with the probability of  ൌ ݁
ಷቀಸభ

ᇲ ,ಸమ
ᇲ ቁషಷሺಸభ,ಸమሻ

 . If the new state is accepted, 

set ሺܩଵ, ଶሻܩ ൌ ሺܩଵ
ᇱ , ଶܩ

ᇱሻ, ܶܨܧܮ ൌ ௨௧ܨ ᇱ, andܶܨܧܮ ൌ ଵܩሺܨ
ᇱ, ଶܩ

ᇱሻ. 

Step 5: If ܨ௦௧ െ ௨௧ܨ  ,ଵܩset ሺ ,ݎ ଶሻܩ ൌ ൫ܩଵ,௦௧, ܶܨܧܮ ,ଶ,௦௧൯ܩ ൌ ܨܧܮ ܶ௦௧, and 

௨௧ܨ ൌ  .௦௧ܨ
Step 6: Repeat Step 3 to Step 5 until k reaches ݇௫, then output ሺܩଵ,  ,௨௧ܨ ,ଶሻܩ

൫ܩଵ,௦௧,   .௦௧ܨ ଶ,௦௧൯, andܩ

To try to avoid being trapped in the local optimum, we started the iterations at a relatively 

high temperature and repeated the above simulated annealing algorithm at least 10 times, each 

starting with a randomly chosen state. As final result we used the best performing replication.  
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We evaluated the performance of the developed simulated annealing algorithm to 

identify heterotic groups by maximizing the hybrid performance. First, we studied the 

computational time for different heterotic group sizes setting ܶ ൌ 0.75	and ݎ ൌ 7.5 and 

repeating the algorithm for 10 times with an appropriate ݇௫ (Table Supplementary Note e-

1). 

Table Supplementary Note e-1. Computational time of the developed simulated annealing algorithm under 

different parameter settings for identifying heterotic groups among the 135 parental lines maximizing the hybrid 

performance 

Size of heterotic 

Groups (s) 
ܶ r ݇௫ Time for 

one run1 

Time for all 

10 runs 

s ≤ 10 0.75 7.5 100000 ≤ 5.5 sec ≤ 55 sec 

10 < s ≤ 20 0.75 7.5 1000000 ≤ 54 sec ≤ 9 min 

20 < s ≤ 26 0.75 7.5 10000000 < 10 min < 100 min 

26 < s ≤ 36 0.75 7.5 60000000 < 1 h < 10 h 
1 Computation time was assessed using following setting: processor - Inter(R) Core(TM) i5-3470 CPU @ 

3.20GHz 3.20GHz, RAM: 8GB, 64-bit; Operating System, Software: R x64 3.1.1 

For small heterotic group sizes, we tested the robustness of the developed simulated 

annealing algorithm against an exhausted enumeration algorithm (15). Both algorithms were 

used to identify heterotic groups of size 8 from 20 parents. The detected heterotic groups 

maximizing the hybrid performance were the same for both algorithms. The computational 

efficiency, however, was up to 13 times faster for the simulated annealing versus the 

exhausted enumeration algorithm. We further studied the repeatability of the simulated 

annealing algorithm for larger heterotic group sizes and observed reasonable repeatability 

with the difference of the group constitution reflecting only small differences in the maximum 

hybrid performance below 0.02%. Thus, the performance of the developed simulated 

annealing algorithm facilitates a robust identification of heterotic groups maximizing the 

hybrid performance.  

The simulated annealing algorithm is based on the predicted hybrid performances of 
the 9,045 single crosses. The use of predicted and not observed values can, however, 
introduce a bias. Therefore, we devised a cross validation scenario exclusively for the 
phenotyped hybrids to examine the stability of the groups identified with the simulated 
annealing algorithm (Table Supplementary Note e-2). As no intra-female and intra-male 
hybrids were phenotyped, the cross validation scenario selects promising lines for heterotic 
groups only for the pattern male times female lines.  

As reference base for the cross validations, we identified heterotic groups with two 
population sizes (male lines = {5, 7}; female lines = {10, 25}) based on the observed hybrid 
performances of all 1,604 single crosses. In every cycle of the 100 cross validation runs, we 
randomly selected 360 out of the 1,604 hybrids. The 360 hybrids and 135 parents served as 
training population for genomic predictions of the performances of all 1,604 single crosses. 
This scenario mimics the procedure for the prediction of the 9,045 hybrids based on the 
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phenotyped 1,604 single crosses and the 135 parents. We used the predicted hybrid 
performances of the 1,604 hybrids based on the training population of the 360 hybrids and 
135 parents and identified heterotic groups with the above specified population sizes (male 
lines = {5, 7}; female lines = {10, 25}). We then compared the heterotic groups based on the 
predicted versus the observed hybrid performances and confirmed the stability of the groups 
identified with the simulated annealing algorithm: Around 80% of the individuals overlapped 
between the groupings based on predicted and observed hybrid performances (Table 
Supplementary Note e-3). 

Table Supplementary Note e-2. Composition of the heterotic groups identified with the simulated annealing 
algorithm as well as average hybrid performance within (Intra) and between both heterotic groups (Inter) 

Group 
size 

Group 1 Group 2 Inter 
Selected lines Intra Selected lines Intra 

2 M006 M009 11.12 F102 F097 11.29 11.43 
4 M006 M005 M009 M014 11.08 F097 F006 F102 F012 11.05 11.33 
6 M014 F061 M009 M005 M006 

F115 
11.09 F012 F101 F099 F006 F097 

F102 
11.06 11.26 

8 F061 F115 M006 M015 M008 
M014 M005 M009 

11.02 F102 F012 F006 F020 F099 
F101 F097 F060 

11.08 11.20 

10 F100 M005 F003 M006 F061 F090 
M009 M015 M014 M008 

10.99 F006 F099 F101 F012 F097 
F060 F102 F020 F115 F001 

11.08 11.16 

12 F090 F105 F003 M006 F061 M015 
F100 M014 F067 M005 M009 
M008 

10.99 F001 F006 F097 F012 F120 
M001 F102 F101 F020 F099 
F060 F115 

11.05 11.12 

14 F105 M014 M009 F067 F100 
M015 F090 F104 M005 F061 
M007 F003 M008 M006 

10.96 F022 F001 F083 F097 M001 
F006 F101 F020 F120 F060 
F012 F115 F102 F099 

11.01 11.10 

16 M009 M007 F061 F105 F100 
M008 M005 F003 F104 M014 
F090 F065 M006 M015 F084 F067 

10.95 F101 F006 F099 F086 F102 
F012 F044 F022 F115 F097 
F060 F001 F120 F020 M001 
F083 

10.99 11.07 

18 F061 F104 M006 M008 F003 F084 
F105 F100 F065 F090 M014 F067 
M005 M009 M015 M007 F064 
M013 

10.93 F101 F115 F099 F060 F120 
F102 F044 F071 F020 F097 
F012 F022 F086 F083 F001 
F032 M001 F006 

10.95 11.05 

20 M006 M009 F003 F104 M002 
F100 F062 F090 F084 M007 M015 
F105 M014 F064 F061 M013 F067 
M008 M005 F065 

10.91 F012 F097 F071 F041 F044 
F020 F119 F001 F120 F060 
F032 F101 F099 F102 F022 
F006 F086 F083 M001 F115 

10.92 11.03 

22 M013 M008 F065 M006 F105 
M009 M007 F067 F084 M010 
F061 M005 M014 F106 F104 
M002 F003 F100 F090 F062 F064 
M015 

10.90 F119 F120 F020 F097 F098 
F086 F071 F099 F041 F083 
F006 M001 F022 F044 F101 
F115 F102 F001 F032 F060 
F014 F012 

10.91 11.01 

24 F104 F037 F090 M008 F067 M013 
M005 M009 M014 M002 F105 
M015 F065 M007 M010 F106 
F084 F066 F061 M006 F064 F003 
F100 F062 

10.88 F060 F115 F041 F119 F120 
F032 F091 F098 F006 F083 
F020 F001 F101 F096 F086 
F102 F097 F022 F012 M001 
F014 F099 F071 F044 

10.88 10.98 

26 M002 M010 F037 F090 M006 
F065 M014 F003 F066 M005 F105 
F062 M008 F067 F084 F104 M011 
M007 F106 M015 F061 F064 
M009 M013 F100 F103 

10.86 F014 F060 F096 M001 F101 
F012 F032 F086 F083 F001 
F115 F071 F102 F098 F097 
F099 F006 F022 F091 F120 
F039 F020 F041 F016 F119 
F044 

10.86 10.96 

28 F100 M009 M007 F062 M005 
F106 F067 F104 F085 F061 F084 

10.87 F016 F102 F022 F071 F032 
F097 F060 F041 F096 F046 

10.82 10.94 
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M006 F037 F105 F101 M008 
M011 F065 F064 M014 M013 
F090 F066 M002 M010 F103 
M015 F003 

F039 F120 F012 F091 M001 
F119 F075 F099 F007 F083 
F115 F086 F020 F006 F044 
F014 F098 F001 

30 M002 F064 M013 F090 F003 
M009 F046 F104 F084 F065 F106 
F062 F101 F103 F105 M014 F100 
M015 M006 M008 F067 F085 
F037 M005 M011 M012 F098 
F061 F066 M007 

10.85 F016 F107 F091 F006 F114 
F119 F022 F115 F102 F071 
M001 M010 F097 F020 F086 
F001 F075 F014 F039 F012 
F096 F032 F007 F099 F060 
F044 F120 F041 F083 F077 

10.80 10.91 

32 M013 F085 F104 F084 M010 F062 
F106 M005 F037 F064 M006 F105 
F065 M014 M015 F066 F090 
M009 F003 F061 M002 M007 
M012 F100 F103 F024 F098 M011 
F067 F046 F101 M008 

10.85 F096 F032 F001 F119 F022 
F059 F006 F041 F089 F120 
F016 F044 F095 F086 F115 
F107 F091 F075 F014 F020 
F071 F114 F077 F039 F007 
F083 F102 F099 F012 M001 
F097 F060 

10.77 10.89 

34 F067 F062 M008 M013 F085 F106 
F102 M012 M006 F024 F103 F064 
F104 F120 F058 F101 M007 F065 
F066 M014 M010 F100 F037 F105 
M015 M005 F061 F090 F003 
M002 F084 M011 M009 F114 

10.85 F075 F089 F044 F012 F107 
F007 F096 F083 F014 F032 
F001 F119 F071 M001 F026 
F115 F039 F006 F041 F047 
F042 F098 F095 F016 F097 
F059 F022 F086 F099 F060 
F091 F077 F046 F020 

10.72 10.87 

36 M007 F065 F084 F114 F067 F064 
F024 M012 M002 M005 F085 
F058 M008 F003 M015 F002 
M010 F061 M009 F106 F105 F102 
F104 F062 F066 F037 M013 F103 
F115 M006 F090 F120 M014 F100 
M011 F101 

10.85 F086 F007 F039 F008 M001 
F071 F080 F016 F042 F091 
F096 F060 F118 F099 F046 
F077 F107 F014 F098 F001 
F083 F059 F047 F012 F044 
F022 F006 F097 F095 F020 
F041 F075 F119 F089 F032 
F026 

10.69 10.85 

Table Supplementary Note e-3. Overlap (%) of identified genotypes for the male (Male) and female heterotic 
group (Female) based on observed versus predicted hybrid performances of the 1,604 single crosses 

Group size Male Female Total 
5+10 81.00 74.60 76.73 
7+25 76.43 75.72 75.88 

We contrasted the average hybrid performances of the heterotic pattern identified with 
the simulated annealing algorithm with those of potential heterotic patterns defined using 
standard clustering approaches. As clustering approaches we used the Ward’s clustering based 
on the predicted hybrid performances and Rogers’ distances (Fig. Supplementary Note e-1, 2). 
The average predicted hybrid performances of all potential pairs of groups identified by the 
clustering methods were smaller than the comparable scenarios of the heterotic patterns 
identified by the simulated annealing algorithm (Table Supplementary Note e-2). The highest 
yielding heterotic pattern identified based on the Ward’s clustering method has a performance 
of 10.69 Mg ha-1 (Fig. Supplementary Note e-1) or 10.81 Mg ha-1 (Fig. Supplementary Note 
e-2), i.e., resulting in an increase of 0.17 Mg ha-1 or 0.29 Mg ha-1 compared to the average 
hybrid performance of all 9,045 single crosses. The performance of the corresponding 
heterotic pattern identified with the simulated annealing algorithm amounted to 10.97 Mg ha-1 
for the corresponding group sizes of the Ward’s clustering results based on Rogers’ distances 
or 11.03 Mg ha-1 for the corresponding group sizes of the Ward’s clustering results based on 
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predicted hybrid performances. This results in increases of 0.45 Mg ha-1 or 0.51 Mg ha-1 
compared to the average hybrid performance of all 9,045 single crosses. Thus, using the 
simulated annealing algorithm doubled the gain in performance contributed by the Ward’s 
clustering method underlining the value of the simulated annealing algorithm in order to 
identify high-yielding heterotic patterns. 

 
Fig. Supplementary Note e-1. Average hybrid performances (Mg ha-1) of heterotic patterns (below diagonal) 
identified using the Ward’s clustering approach based on the predicted hybrid performances of 9,045 single 

crosses (above diagonal). 
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Fig. Supplementary Note e-2. Average hybrid performances (Mg ha-1) of heterotic patterns (below diagonal) 
identified using the Ward’s clustering approach based on the Rogers’ distance among 135 parental lines. The 

predicted hybrid performances of all 9,045 single crosses were depicted above the diagonal. 

In order to highlight the advantages of the developed strategy to search for an optimal 
heterotic pattern, we contrasted it with several alternative approaches: a) Parents were 
selected based on their per se performances followed by a random clustering of superior lines 
into heterotic groups. b) Parents were selected based on their general combining ability effects 
followed by a random clustering of superior lines into heterotic groups. c) Midparent heterosis 
values were used as input matrix of the simulated annealing algorithm. d) Better-parent 
heterosis values were used as input matrix of the simulated annealing algorithm. The findings 
of the selection of parents based on their per se performances were discussed in detail in the 
main part of the manuscript (Table 1). Therefore, we focused here on alternative scenarios 
relying on general combining ability effects, mid- and better-parent heterosis (Table 
Supplementary Note e-4). The developed strategy to search for an optimal heterotic pattern 
based on the hybrid performances outperformed all alternatives with respect to the most 
relevant criterion grain yield. Using the developed simulated annealing algorithm with 
heterosis values as input matrix resulted in a drastic reduction in grain yield performance of 
the hybrid population corresponding to up to 20.9 years of selection gain. Therefore, using the 
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simulated annealing algorithm based on heterosis values is despite the benefits in the ratio of 
additive versus the dominance genetic variance, no promising alternative compared to the 
developed approach using the simulated annealing algorithm based on a matrix of the hybrid 
performances. 

Choosing parents for heterotic groups based on their general combining ability effects 
showed the smallest difference in grain yield performance still corresponding to up to 7.5 
years of selection gain. Nevertheless, we observed a higher ratio (up to 5.3 times higher) of 
the additive versus the dominance genetic variance for the heterotic groups identified 
applying the simulated annealing algorithm based on estimated hybrid performances 
compared to the scenario of random grouping of lines selected based on their general 
combining ability effects. The enhanced relevance of additive genetic variance contributes to 
an increased recurrent selection gain (16). Moreover, predictions based on additive effects are 
more accurate than those based only on dominance effects (14). Summarizing, these findings 
clearly underline the value of the simulated annealing algorithm based on the hybrid 
performances in order to identify high-yielding heterotic patterns. 

The long-term success of the identified heterotic pattern is assessed by estimating 
usefulness, selection limit, and representativeness of the heterotic pattern with respect to a 
defined base population. The concept of usefulness was introduced to quantify the 
performance of a selected fraction of a population after one cycle of selection of line breeding 
(22). Here, we implemented a modified usefulness criterion ܷீభ,ீమ to quantify the 

performance of a hybrid population resulting from crossing two heterotic groups ሺܩଵ,  	ଶሻܩ
after one, five, and ten cycles of selection. For such moderate lengths of selection cycles and 
low selection intensities, we assumed that the genetic variance of the hybrid population is not 
impacted by selection. This assumption is based on previous simulation studies highlighting 
that for complex traits influenced by a couple hundred QTL, the genetic variance will not 
decrease within 10 cycles of selection (23). The modified usefulness of a heterotic pattern 
ሺܩଵ,  is then defined as ܷீభ,ீమ	ଶሻܩ ൌ ீߤ  ݊݅ீߪ௦݄௦, where ீߤ is the mean genotypic value of 

the hybrid population generated by randomly crossing parents in ܩଵ with those in ܩଶ, ݊ 
denotes the number of the selection cycles, ீߪ

ଶ is the genetic variance in the hybrid 
population, ݅௦	is the selection intensity and ݄௦	the square root of the heritability, whose 
product was defined as 1.75 (h² = 0.73; ݅௦ୀ.ହ ൌ 2.05). The parameters ீߤ	and ீߪ

ଶ were 
estimated for each pair of heterotic groups by combining computer simulations using the 
software package Plabsoft (47) with the developed genomic selection models. First, we 
generated SNP profiles of 1,000 gametes extracted from a gene orthogonal population, which 
was established by crossing the detected parental lines of each heterotic group. Second, the 
two simulated populations were crossed to generate a hybrid population. The genomic profiles 
of the hybrids were used in combination with the developed genomic selection models and the 
mean (ீߤ) and variance of the hybrid populations ீߪ

ଶ were estimated. Following the defining 
of the maximal long-term selection response (23), we estimated the theoretical selection limit 
of a hybrid population resulting from crossing two heterotic groups. The theoretical selection 
limit was estimated using the marker effects determined through genomic prediction in the 
population of the 1,604 hybrids and assuming absence of migration, mutations, and epistasis. 
Assume two alleles per QTL and n QTL underlying the trait under consideration. Suppose 
that the two alleles of the xth QTL are denoted as ܣ௫,ଵ and ܣ௫,ଶ  (ݔ ൌ 1,2,… , ݊ெ). For the 
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heterotic groups ܩଵ and ܩଶ as defined previously, the theoretical selection limit is 

,ଵܩሺܮܵܶ ଶሻܩ ൌ ߤ  ∑ ೣ∈ೣݔܽ݉ ,ೣ∈ொೣሼ ݃ೣ,ೣೣ,ೣሽ
ಾ
௫ୀଵ , where µ is the overall mean of the 

hybrid population, g౮,౩౮,౪ is the genotypic value of the genotype ܣ௫,௦ܣ௫,௧ (ݏ, ݐ ൌ 1,2) which 

was estimated through genomic prediction, and ܩଵ,௫ ൌ ቄܣ௫,ೣ,			௫ ∈ ௫ܲ ⊂ ሼ1,2ሽቅ, ܩଶ,௫ ൌ

ቄܣ௫,ೣ,			ݍ௫ ∈ ܳ௫ ⊂ ሼ1,2ሽቅ are the sets of alleles at the xth QTL segregating in the individuals 

of ܩଵ and ܩଶ, respectively. 
The proportion of the unique genomes in the population represented by a subset of 

individuals was measured by the genetic representativeness (48). The genetic 

representativeness of two specific heterotic groups ሺܩଵ,  ,ଶሻ is defined as follows. For the Lܩ

ݓ) ଶ, and ܰ as defined previously, and for individual ݈௪ܩ ,ଵܩ ∈ ܰ), the proportion (ܲݎ௪) of 

݈௪’s genome present in ܩଵ ∪  :ଶ isܩ

௪ݎܲ ൌ ሺ

ۏ
ێ
ێ
ێ
ێ
ۍ
ܽభభ 	⋯	ܽభ	ܽభభ 	⋯	ܽభ
		⋮						⋱						⋮									⋮						⋱						⋮		

ܽభ 	⋯	ܽ	ܽభ 	⋯	ܽ
ܽభభ 	⋯	 ܽభ	 ܽభభ 	⋯	 ܽభ
		⋮						⋱						⋮									⋮						⋱						⋮		
ܽభ 	⋯	 ܽ	 ܽభ 	⋯	 ܽ ے

ۑ
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ې
ିଵ
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⋮
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⋮
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⋮
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⋮
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ې

ൌ ሺீܣభ∪ீమ
ିଵ റܽீభ∪ீమ,௪ሻ

ሬሬሬሬറீݎ்ܲ
భ∪ீమ, 

where a୧୨	is the additive relationship between individual ݈ and ݈, ݅, ݆ ∈ ܰ; ீܣభ∪ீమ is the 

additive relationship matrix among all individuals in ܩଵ ∪  ଶ; റܽீభ∪ீమ,௪ is the vector ofܩ

additive relationships between all individuals in ܩଵ ∪ ሬሬሬሬറீݎܲ ;ଶ and individual ݈௪ܩ
భ∪ீమ is the 

vector of the genome proportion present in ܩଵ ∪  ଶ (which is actually a vector of 1s). Theܩ

additive relationship is defined as 1 minus the Rogers’ distance of two individuals. The 

genetic representativeness of two heterotic groups ሺܩଵ,  ௪ of allݎܲ ଶሻ, is the average value ofܩ

n individuals in L: ܲݎ ൌ ଵ


∑ ௪ݎܲ
௪ୀଵ . 
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Table Supplementary Note e-4. Comparison of overlapping genotypes (OG, %), yield increase expressed as number of years needed to realize this selection gain ((18), ΔSG, 
years), increase in midparent heterosis (ΔMPH, %, increase in average Rogers’ distances (ΔRD, %), and decrease in the ratio of dominance versus additive genetic variance 
(ΔVC, %) contrasting the heterotic pattern identified based upon the simulated annealing algorithm versus three alternative approaches: Parents were selected based on their 

general combining ability effects followed by a random clustering of superior lines into heterotic groups (GCA selection). Midparent heterosis values were used as input matrix of 
the simulated annealing algorithm (Midparent heterosis). Better parent heterosis values were used as input matrix of the simulated annealing algorithm (Better-parent heterosis). 

Group  
size 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 

GCA selection 

OG 50 50 58 69 75 71 71 81 81 83 82 81 87 86 88 89 87 86 

ΔSG 7.5 6.9 6.3 3.4 2.9 3.1 3.2 2.5 2.3 2.5 2.7 2.7 2.3 2.4 2.2 2.1 2.3 2.3 

ΔMPH 12 13 11 5 5 5 5 4 5 7 7 6 6 5 5 6 6 5 

ΔRD 1 2 6 2 1 1 1 2 3 3 3 2 3 3 3 3 3 3 
ΔVC 81 84 83 76 71 44 45 56 53 49 42 43 51 43 39 39 38 38 
                   
Midparent heterosis 
OG 0 50 42 38 35 38 32 34 39 48 52 52 56 52 57 61 62 67 
ΔSG 20.4 6.2 7.7 9.0 9.6 8.8 10.1 9.0 8.5 7.6 7.0 7.2 6.6 6.6 5.8 5.8 5.4 4.9 
ΔMPH -9 -10 -9 -9 -10 -9 -9 -8 -8 -7 -7 -6 -6 -7 -6 -5 -5 -4 
ΔRD -15 -10 -8 -14 -15 -12 -12 -10 -10 -10 -10 -10 -9 -9 -8 -8 -7 -6 
ΔVC -2480 -642 -951 -634 -698 -959 -848 -709 -686 -551 -419 -372 -338 -324 -325 -311 -245 -234 
                   
Better-parent heterosis 
OG 0 25 33 0 0 0 0 0 3 10 14 19 19 20 25 34 46 51 
ΔSG 7.6 7.0 6.5 20.9 20.2 19.2 16.9 15.6 14.8 13.7 13.1 13.0 13.2 13.1 12.6 11.7 10.3 9.7 
ΔMPH -3 -4 -4 -3 -3 -2 -3 -3 -2 -1 0 0 0 -1 0 1 1 1 
ΔRD -7 -9 -6 -15 -15 -13 -12 -11 -9 -9 -8 -8 -8 -7 -6 -7 -5 -4 
ΔVC 88 91 55 63 56 38 -15 -5 8 1 9 15 5 13 14 23 28 26 
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f. Phenotypic data analyses  

The 1,749 genotypes (1,604 single-cross hybrids, 135 parents, 10 commercial varieties) were 

evaluated in two years at totally 11 environments in Germany. The locations were Adenstedt 

(Ade), Seligenstadt (Sel), Böhnshausen (Boh), Hohenheim (Hoh), Hadmersleben (Had), and 

Harzhof (Hhof). The experimental design at each environment consisted of 3 trials. The trials 

were partially replicated 20x10 (augmented with 10) alpha lattice designs which were 

connected by 10 replicated common checks (Fig. Supplementary Note f-1). The same seeding 

rate was used for both parental lines and hybrids. The plot size ranged from 5 m² to 7.4 m². 

Harvesting was performed mechanically and adjusted to a moisture concentration of 140 g 

H2O kg-1. We checked for the presence of neighboring effects due to plant height. We 

observed, however, absence of an association between grain yield and plant height of the two 

adjacent plots (e.g., average Pearson moment correlation of r = 0.05 for the three trials at the 

environment Seligenstadt 2012). Besides this, further data was collected for quality traits (37) 

and on separate observation plots also for abiotic and biotic stress resistances ), Details on the 

analyses of these traits were published elsewhere (37). 

 
Fig. Supplementary Note f-1. Graphical illustration of the experimental field design used at Seligenstadt in 2012. 

We applied a two-step procedure proposed by Möhring and Piepho (49) for the 

analyses of the grain yield data across environments using the standard error as weighing 

factor. In the first step, we used a mixed model procedure for the analyses of individual 

environments modelling effects for genotypes, trials, replications nested within trials, and 

blocks nested within trials and replications (37). Best linear unbiased estimates (BLUEs) of 



28 

 

genotypes were calculated. We inspected the pairwise correlations among BLUEs of the 

1,749 genotypes evaluated in the eleven environments and observed absence of grouping into 

distinct mega-environments (Fig. Supplementary Note f-2).  

 
Fig. Supplementary Note f-2. Correlations among BLUEs of the 1,749 genotypes evaluated in eleven 

environments. 

For the analyses across environments, we applied the following linear mixed model 

based on BLUEs of individual environments: 

Grain yield ~ Group + Environment + Lines + Hybrids + Lines:Environment + 

Hybrids:Environment. 

All effects except the group effect were treated as random. The total variance of hybrids was 

further decomposed into variance due to general combining ability effects (GCA) of males 

and females, and variance due to specific combining ability (SCA) of crosses: 

Grain yield ~ Group + Environment + GCAmales + GCAfemales + SCA + GCAmales:Environment 

+ GCAfemales:Environment + SCA:Environment. 

We assumed that the variance due to GCA is same for both males and females and estimated 

the variance components by the REML method using the software ASReml-R 3.0 (45). 

Significance of the variance component estimates were tested by model comparison with 

likelihood ratio test (50). Broad-sense heritability was calculated as the ratio of genotypic to 

phenotypic variance, ܪଶ ൌ ீߪ	
ଶ/ሺ	ீߪ

ଶ 	 ൈாீߪ	
ଶ 	ܧ/ 	 ܧ/ሺ	ଶߪ	 ൈ ܴሻሻ, where E refers to the 
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number of environments, R is the average number of replications per entry at a location, and 

 ଶ refers to pooled error variance. In addition, we assumed fixed genotypic effects to obtainߪ	

BLUEs of the genotypic values of hybrids, parents, and commercial varieties. 

Commercial heterosis was calculated for each hybrid as CH = F1 - Check, where F1 

denotes the grain yield performance of the hybrid and check refers to the grain yield of the 

best performing commercial variety. Midparent heterosis was calculated as MPH = F1 – (P1 + 

P2)/2, where P1 and P2 denotes the performance of the parental lines of the respective hybrid. 

We used the least significant difference (LSD) at an alpha level of 5% to test whether a hybrid 

outperformed the best commercial check. 
 

g. Metabolite profiling 

We sampled for each of the 135 parental lines 10 flag leafs per replicate at three environments 

at the time when >60% of the genotypes had reached BBCH-69 (39). Flag leaf samples were 

cut off, bulked, shock frozen in liquid nitrogen and further transported on dry ice. All plots 

were sampled during 9-11 am within 120 min. Prior extraction samples were freeze dried and 

homogenized by means of a ball mill (MM200, Retsch, Haan, Germany). Polar leaf 

metabolites were extracted twice with 500 μl/20 mg DW of 70% MeOH containing 50 µM 

13C6/D7 glucose as an internal standard (Sigma-Aldrich, Munich, Germany). Supernatants 

were collected by centrifugation at 20,000g, 4°C for 20 min and combined. For phase 

separation 1,000 μl of water and 500 μl of chloroform were added. In order to capture 

systematic shifts during extraction and measurement we created a mixed sample consisting of 

equal amounts of all samples. The measurement of polar flag leaf extracts followed the 

protocol of Lippmann et al. (40). Data acquisition and processing was performed with 

MassLynx 4.1 software (Waters, Milford, MA, US).  

To achieve homoscedasticity of the residuals of metabolites, the Box-Cox power 

transformation was applied. After outlier tests (51), we used a one-step model to estimate the 

genetic variance components of lines as well as the variance of genotype × environment 

interactions. Significance of variance component estimates were tested by model comparison 

with likelihood ratio tests where the halved P values were used as an approximation (50). A 

total of 34 metabolic traits were included for further analyses exhibiting significant (P < 0.05) 

genetic variances (Table S5). Using the variance components, we estimated the heritability on 

an entry-mean basis. In addition, we assumed fixed genetic effects and estimated the best 

linear unbiased estimates (BLUEs) of lines. The data analyses of the metabolic traits were 

performed using the software ASReml-R 3.0 (45). 
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h. Statistical methods for genomic prediction 

Genomic best linear unbiased prediction model (G-BLUP) including additive, dominant 

and epistatic effects 

Let ݊ be the number of genotypes. The G-BLUP model has the following form: 

ݕ ൌ 1ߤ  ݃  ݃ௗ  ݃  ݃ௗ  ݃ௗௗ  ݁, 
where ݕ is the vector of phenotypic records, 1 is an ݊-dimensional vector of ones, ߤ refers to 

the mean. The total genotypic values are decomposed into five parts: additive (݃), 

dominance (݃ௗ), additive ൈ additive (݃), additive ൈ dominance (݃ௗ), and dominance ൈ 

dominance effects (݃ௗௗ). Please note that ݃ௗ represents a composite of additive ൈ 

dominance as well as of dominance ൈ additive effects. We assumed that ߤ is a fixed 

parameter, ݁ ∼ ܰሺ0, ଶሻ, ݃ߪܫ ∼ ܰሺ0, ଶሻ, ݃ௗߪܩ ∼ ܰሺ0, ௗߪௗܩ
ଶሻ, ݃ ∼ ܰሺ0, ଶߪܩ ሻ, 

݃ௗ ∼ ܰሺ0, ௗߪௗܩ
ଶ ሻ, and ݃ௗௗ ∼ ܰሺ0, ௗௗߪௗௗܩ

ଶ ሻ, where the matrices ܩ, ܩௗ, ܩ, ܩௗ, and ܩௗௗ 

are the relationship matrices corresponding to additive, dominance, and epistatic genotypic 

values. We further assumed that all other possible covariance terms are zero.  

The different relationship matrices were calculated as follows: Let ܺ ൌ ሺݔሻ be the 

݊ ൈ   equals the number of a chosen allele at the ݆-th locusݔ matrix of SNP markers, where 

for the ݅-th genotype (so ݔ ൌ 0, 1	or	2). Let  be the allele frequency of the ݆-th marker. We 

defined the additive design matrix ܹ ൌ ሺݓሻ by setting ݓ ൌ ݔ െ  . Then the additive2

relationship matrix is ܩ ൌ
ௐௐᇲ

ଶ∑ ೖሺଵିೖሻ

ೖసభ

, which is the same as in the standard G-BLUP 

model (41). Next, we defined the 	݊ ൈ ܦ dominance design matrix  ൌ ሺ݀ሻ as follows (52):  

݀ ൌ

ە
ۖ
۔

ۖ
െۓ

ଶଶଵଶ2
ߠ

, if	ݔ ൌ 0

ଶଶଵଵ4
ߠ

, if	ݔ ൌ 1

െ
ଵଶଵଵ2

ߠ
, if	ݔ ൌ 2

 

where ߠ ൌ ଵଵ  ଶଶ െ ሺଵଵ െ ௗܩ ଶଶሻଶ. Then the dominance relationship matrix is ൌ

 .ሻ. Here tr denotes the trace of a matrix, i.e., the sum of all diagonal elements′ܦܦᇱ/trሺܦܦ݊

The epistatic relationship matrices were defined as follows: ܩ ൌ ௗܩ ,ܩ#ܩ ൌ  ௗ, andܩ#ܩ

ௗௗܩ ൌ  .ௗ, where # denotes the Hadamard product (element-wise product) of matricesܩ#ௗܩ

The above model considered additive (A), dominance (D) and all first-order digenic epistatic 

effects (AA, AD and DD). We also considered reduced models which only include A (which 

is the same as the standard G-BLUP), A+AA, A+D+AA, or A+D+AA+AD.  

The G-BLUP model was also used for the metabolome-based hybrid prediction and 

joint genome- and metabolome-based hybrid prediction. The metabolome-based hybrid 

prediction corresponds to the above outlined model exclusively focusing on the additive part:  

ݕ ൌ 1ߤ  ݃ெ  ݁, 

with the additive relationship matrix defined as one minus the Euclidean distance matrix 

calculated by the metabolomic profiles of each parental line.  

For joint genome- and metabolome-based hybrid prediction the model is:  
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ݕ ൌ 1ߤ  ݃ெ  ݃ௌ  ݃ௗௌ  ݁, 

with ݃ெ	 denoting the additive effects estimated based on metabolomic profiles, and ݃ௌ and 

݃ௗௌ are the additive and dominance effects of SNP markers, respectively. Standard deviations 

of the prediction accuracies were estimated using a bootstrap procedure. All the above models 

were implemented using the R package BGLR (53). 

Bayesian model (Bayes Cπ) 

The Bayes Cπ approach has been previously described for additive effects (42), extended 

towards additive and dominance effects, and implemented for hybrid wheat prediction (20). 

The model for Bayes Cπ including additive and dominance effects is defined as:  

ܻ ൌ 1ߤ  ܼߜܽ  ܼߜௗ݀  ݁, 

where ݕ is the vector of phenotypic records, 1 is an ݊-dimensional vector of ones and 

n is the number of hybrids, ߤ refers to the mean, ܼ and ܼ	are n × m design matrices for the 

additive and dominance effects of the markers, where m refers to the number of markers. The 

elements of the element of ܼ is 0, 1, 2, and 0, 1 for ܼ. While ܽ ൌ ሺܽଵ, ܽଶ, … ܽሻ் and 

݀ ൌ ሺ݀ଵ, ݀ଶ, … ݀ሻ் are vectors of length m, ܽ and ݀	denoted the additive and dominance 

effects for i-th marker. ݁ ൌ ሺ݁ଵ, ݁ଶ, … ݁ሻ் is a vector of length n, and ݁ is the residual for j-th 

hybrid. The indicator parameters ߜ	 and ߜௗ	before the marker effect are 1 or 0 denoting 

whether the marker effect is included or discarded in the model, respectively.  

The prior distribution for the marker effects are ܽ~ܰሺ0, ,ௗߤ݀~ܰሺ	 ሻ,	ଶߪ ௗߪ
ଶ	ሻ, with 

,ߛܰ൫		ௗ having a prior distributionߤ ௗߪ
ଶ	/݉൯, while γ represent the anticipated size of 

dominance effects, and ݉ is the anticipated number of markers that has contribute to the 

dominance effect. For the residual	݁, we assumed a prior distribution ݁~ܰሺ0,  ሻ. The prior	ଶߪ

distribution of variances are all assumed to has scaled inverse Chi-square distributions 

	ܵଶ߯ఔೌߥ~ଶߪ
ିଶ, ߪௗ

ଶ~ߥௗܵௗ
ଶ߯ఔ	

ିଶ, and ߪଶ~ߥܵଶ߯ఔ	
ିଶ, respectively. The indicator parameter 

ሺ݃	ߜ ൌ ~	ߜ has a prior distribution		,	ሻ݀	ݎ	ܽ ൜
0, ߨ	ݕݐ݈ܾܾ݅݅ܽݎ	݄ݐ݅ݓ

1, 1	ݕݐ݈ܾܾ݅݅ܽݎ	݄ݐ݅ݓ െ ߨ
, while the 

parameter ߨ	ሺ݃ ൌ ,~ܷሺ0ߨ		ሻ has its own prior uniform distribution݀	ݎ	ܽ 1ሻ. All the 

unknown parameters are random draws from the full conditional densities by a special 

Markov Chain Monte Carlo (MCMC) algorithm called Gibbs sampling. The detail of MCMC 

algorithm for Bayes Cπ has been outlined in detail elsewhere (20). For the convenience of 

reader, we give a short summary of the Gibbs sampling with the full conditional distribution 

of all unknown parameters used in the algorithm.  

Gibbs sampling: 

Step 1: Sample the overall mean: ߤ ∼ ܰሺଵ
ሺ௬ିಲఋೌିವఋௗሻ


, ఙ

మ


ሻ.  

Step 2: Sample the variance of residual and additive effects from inverted-chi-square 

distributions 	ߪଶ ∼ ሺ்݁݁  ܵଶሻ߯ఔାߥ
ିଶ  and 		ߪଶ ∼ ሺ்ܽܽ  ܵଶሻ߯ఔೌାߥ

ିଶ , respectively.  

Step 3: Sample the expected mean and variance of the dominance effects 

ௗߤ ∼ ܰሺ
ଵௗାఊ

ା
, 	ఙ

మ

ା
ሻ	, and ߪௗ

ଶ ∼ ሾሺ݀ െ ௗሻ்ሺ݀ߤ െ ௗሻߤ  ௗܵௗߥ
ଶሿ߯ఔା

ିଶ , respectively. 
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Step 4: Sample the additive effects from full conditional distribution ܽ 	∼ ܰሺ ܽ,
ఙమ

ఏ෩
ሻ with	 ܽ ൌ

ಲ
 ቀಲାቁ	

ఏ෩
 and ߠ෨ ൌ ܼ

்
ܼ 

	ఙమ

	ఙೌ
మ, while ܼ refers to the i-th column of		 ܼ. The additive 

effect ܽ was accepted with probability	 ଵିగೌ
ଵିగೌାೌగೌ

. Here,	 was the ratio of likelihood with 

ߜ ൌ 0 and ߜ ൌ 1.  

Step 5: Sample the dominance effects from the full conditional distribution ݀ ∼ ܰሺ ሚ݀,
ఙమ

ఎ
ሻ 

with ሚ݀ ൌ
ವ
 ቀವௗାቁାఓ

	
మ

	
మ

ఎ
	 and ߟ ൌ ܼ

் ܼ 
	ఙమ

	ఙ
మ.	 	ܼ refers to the i-th column of	ܼ and 

݀ was only accepted with probability	 ଵିగ
ଵିగାగ

. Here, ௗ was the ratio of likelihood for 

ௗߜ ൌ 0 and ߜௗ ൌ 1.  

Step 5: Sample the ߨ (݃ ൌ  used for the next iteration with a Beta (݀	ݎ	ܽ

distribution		ߨ~ܽݐ݁ܤሺ1,݉ െ ߜ்ߜ  1, ߜ்ߜ  1ሻ. 

The above sampling process was repeated 20,000 times, the first 2,000 results were used as 

burn in. The estimates of ߤ, ܽ, ݀, 	,ොܽ ,ߤ̂ ௗ are denoted asߜ	 , andߜ መ݀  መௗ. Theߜ	 መ, andߜ		,	

performance of the hybrids in the test set was predicted as: ௧ܻ ൌ 1̂ߤ  ܼ௧ߜመ ොܽ  ܼ௧ߜመௗ መ݀, 
while the ܼ௧ and ܼ௧	are design matrices for the additive and dominance effects of the 
hybrids from the test set. 
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