S1 Text - Supplementary Methods

Mathematical modeling

1 Data-driven model of viral spread and IFN-induced antiviral defense

Our studies of the interactions between DENV and the IFN system revealed that effi-
cient viral spread and IFN-induced antiviral immune defense occur simultaneously in
an infected cell population (cf. Fig 1A, B and Fig 5). To analyze the dynamics of the IFN
response after infection with DENV at a quantitative level, we established a data-driven
mathematical model.

The time-resolved data after wildtype DENV infection (cf. Fig 6B, C) suggest that the
timing of viral spread as well as IFN release play an important role in the competition
between virus and the IFN system. Regarding the high diffusion coefficients of DENV
(2.6x10*um?/h, [S1]) and IFN (1.1x10%°um?/h, [S2]), spread occurs over many cell
diameters on the relevant time scale of hours and spatial gradients of DENV as well
as IFN are negligible. Therefore, we developed a population-based delay-differential
equation (DDE) model with uniform distribution of secreted IFN and extracellular virus.

The observed single-step growth curves of virus replication, virus production and IFN
secretion after high dose infection with DENV (cf. Fig 4C, D) illustrate that these pro-
cesses are heterogeneously distributed among single cells. As an approximation of
the temporal distribution of these processes, we take into account the delay of virus
replication, virus production and IFN secretion in form of constant time delays.

In our population-based model (Fig 6A) we initially consider a number of naive cells Sy
which are susceptible to virus infection, as well as an initial extracellular viral load V4.
Susceptible cells S can become infected by extracellular virus V' with infection rate ry
(cf. blue arrow in Fig 6A). Depending on the time elapsed since viruses have entered
the host cells, infected cells I can acquire up to three different features in parallel:

— After a time delay g, infected but not yet virus replicating cells Iz turn into virus
replicating cells Ir. The time delay of virus replication 7y is related to the mean
expression onset of virus replication in individual cells monitored after infection
with DENV-faR (cf. Fig 5 and Fig 6B).

— After a time delay 7y, infected but not yet virus releasing cells I;; become virus
producing cells Iy and release new generated infectious virus particles with the
virus production rate vy. The time delay of virus production n, represents the
average time required to replicate, translate viral proteins, assemble and release
new virus particles (cf. Fig 4C).



— After a time delay 7, infected but not yet IFN expressing cells Iz turn into IFN
secreting cells Ir and produce IFN F' with the IFN secretion rate vg. The time
delay of IFN secretion 7 corresponds to the mean onset of IFN expression. It
includes the necessary time of viral recognition, downstream signal transduction
and IFN transcription, translation and secretion (cf. Fig 4D).

Since the time delay 7y also comprises the duration of virus replication, the condition
7v > 7R Must be fulfilled, while we do not require any temporal link between 7 and both
other time delays. Whether the production of new virus particles takes longer than IFN
secretion or vice versa will be determined by the parameter estimation.

According to our experimental study, IFN has two antiviral effects (cf. Fig 1A, B and S1
Fig):

— Pre-stimulation with IFN demonstrated that secreted IFN can protect naive cells
against DENYV infection. To integrate this paracrine IFN response in our model,
we take into account an IFN-induced switch from susceptible cells to protected
cells P with the protection rate r¢ (solid green arrow in Fig 6A).

— Stimulation of infected cells with IFN in an early phase after viral entry can ac-
tivate antiviral defense mechanisms, which reduce virus replication and conse-
quently virus production. To keep the model simple, so that its parameters can
be identified from experimental data, we neglect a direct autocrine impact of IFN
in the first instance (dashed green arrow in Fig 6A). After the model parameter-
ization, we will examine the effect of secreted IFN on infected cells directly with
an extended version of our model, which is described in detail in section 4.

In order to include the removal of extracellular virus and IFN by cellular uptake and, to
a lesser extent, by extracellular degradation, we assume a decrease of virus and IFN
with the rate constant of virus degradation dy and the rate constant of IFN degradation
dg, respectively.

Moreover, we observed that infected cells proliferate less and die faster than non-
infected cells. To compensate this propagation difference and, additionally, to keep
the number of model parameters low, we consider an inhibited proliferation in infected
cells, whereas susceptible and protected cells proliferate with the rates pg and pp.

To establish the DDE system of our model, particular attention must be paid to the
formulation of the three features of the infected cells comprising virus replication, virus
production and IFN expression, which begin at time 7R, v and 7¢, respectively. As the
time delays 7,,, for m € {R, V, F} are free parameters and only bound to the condition
Tv > TR, the properties of the infected cells can arise at different times, overlap each
other and take place in parallel. Therefore we consider each feature of the infected
cells separately and calculate the number of inactive infected cells I (t) and active
infected cells I,,,(t) for m € {R, V, F} depending on time ¢ € R. For this purpose we first
require the total number of infected cells I at time ¢

I(t) = Ln(t)+In(t) Vme{R,V,F} (1.1)



and the corresponding differential equation

i) "R v @)S(@). (1.2)
The number of inactive infected cells I at time ¢ consists of all cells which become

infected in the time period [¢ — 7,,,, t], Since after 7,,, inactive cells I progress to active
cells I,,. Thus, I is given by

¢
(1.2)

Ln(t) f ryV (5)S(s)ds. (1.3)

t—Tm

To obtain the differential equation I, we differentiate both sides of (1.3) with respect
to time ¢ and apply the fundamental theorem of calculus:

t

Im(t) = %frVV(s)S(s)ds

t—Tm

ryV (t)S(t) —ryV (t = Tim)S(t = Tim). (1.4)

Using the preceding equations, the differential equation I,,, results from

o) 210 - Fn(0)
= I(t) - Im(t)

A LV (= 7n) St = Tm). (1.5)

Taking all considerations together, our model is described by the following DDE system:

S(t) = —rV(1)S(t) —reF(t)S(t) +psS(t)
Ig(t) = rV(#)S(t) -ryV (t-7R)S(t - TR)
Ip(t) = rV(t-7R)S(t-TR)

LGt = rV(@®)SE) —ryV (t-7v)S(t - 1v)
Iy(t) = mV(t-7)S(t-1)

(t) = wV(t)SE)-ryV(t-T1e)S(t - 7¢)
Ie(t) = ryV(t-7F)S(t-7¢)

P(t) = reF(t)S(t)+ppP(t)

F(t) = vple(t) - deF(t)

V() = wiy(t)-dyV(1).

(1.6)

The corresponding initial value problem of our model is defined by the DDE system
(1.6) for time ¢ > 0 together with initial conditions, which we specify next. At the starting



time ¢y = 0 only two initial values are unequal to zero, namely the number of susceptible
cells S(0) = Sp as well as the extracellular viral load V' (0) = V,. Additionally, we must
provide history functions for those variables in our system (1.6), which have retarded
arguments and refer to the past [to — 7, t0] for m € {R, V, F}. Since we will simulate
experiments that start with the initial infection at time ¢y = 0, we must set V(t) = 0 for
t < 0. This implies, however, that the choice of the history function for the number of
susceptible cells S is irrelevant for the solution of the DDE system (1.6), as the delayed
variable S(t - 7,,,) with 7,,, > 0 is always multiplied by V (¢t - 7,,,) and V (¢t - 73,,) = 0 for
t < T, For simplicity, we take S(¢) =0 for ¢ < 0.

To solve the DDE system (1.6) we utilize the freely available RADARS solver written
in ANSI Fortran-90 [S3]. The RADARS5 framework comprises an algorithm to calculate
numerically the solution of stiff delay-differential equations based on an adapted 3-
stage Radau llA collocation method [S4, S5, S6]. This algorithm corresponds to a
certain implicit Runge-Kutta method of order 5 in which the Runge-Kutta equations are
solved by means of a suitable Newton process [S7]. The Newton iterations require
two Jacobian matrices, first the standard Jacobian matrix 7 and, second, the Jacobian
matrix with respect to the retarded variables 7. These Jacobian matrices are either
computed internally or can be provided by the user. In order to increase the accuracy
of the numerical solution, we implemented both time-dependent Jacobian matrices of
our DDE system (1.6) within the RADARS5 framework.

In addition to the RADARS5 solver we also tested Matlab’s dde23 solver for delay-
differential equations with constant delays [S8, S9]. Although the implementation in
Matlab is more convenient and modifications of the model can be achieved with less
effort than within the RADARS framework, the significantly faster calculation in Fortran
makes the RADARS framework more suitable for the purpose of parameter estimation,
which will be detailed next.

2 Parameterization of the model based on wildtype DENV data

For the parameterization of the model (1.6), we focus on the time-resolved flow cytom-
etry data set along with ELISA quantification of IFN-X after infection of the IFIT1deGFP
reporter cells with DENV-faR (cf. Fig 6B, C). This data set was obtained by measuring
a specified proportion of the cell suspensions and thus provides absolute numbers of
virus replicating and IFN responding cells with respect to the measured volume.

At the beginning of the experiments, the IFIT1deGFP reporter cells were infected at a
MOI of 0.1 TCIDsp/cell. Based on the definition of MOI given by

MOl = 2 (2.7)

and the initial number of naive cells Sy ~15000 in the relevant experiments, we set the

initial extracellular viral load Vo %" 0.1x15000 = 1500 arbitrary units/ml. This speci-



fication implies, that the viral load related infection rate ry can be determined up to a
scaling factor.

In addition, we take advantage of an independent virus stability experiment to obtain
an estimate of the virus degradation rate constant dy (S7C Fig). The DENV-faR sta-
bility analysis was performed by incubating IFN-incompetent BHK-21 cells with a high
number of DENV-faR particles i.e., the BHK-21 cells were infecting and the cell culture
medium was not changed. The extracellular amount of virus was identified by TCID5q
assay over time. Since the production of new infectious virus particles in host cells
takes approximately 16 h (cf. Fig 4C and S7B Fig), the measured extracellular amount
of virus decreased continuously between 0 and 12 h after incubation. According to the
shape of the observed extracellular virus kinetic V(t), we suppose an exponential virus
decay and consider as objective function

V() = Vye ™ (2.8)

for t € R with the initial condition V(0) = V. To fit the parameters of the objective func-
tion (2.8) to the virus stability data, we utilized the trust-region-reflective least-squares
algorithm of Matlab’s optimization toolbox [S10]. After applying the optimization method
with 10* different random initial values, the best fit yielded dy = 0.4/h and provides a
satisfying match with the data (cf. S7C Fig, blue curve).

Moreover, we found that fitting of the IFN secretion rate vg and the rate constant of IFN
degradation dg at once would lead to a correlation of both parameters, and thus we set
de = 0.15/h [S11].

To determine the remaining model parameters, we use the time-resolved data set con-
sisting of two independent flow cytometry measurements along with ELISA quantifi-
cations post DENV-faR infection (cf. Fig 6B, C) by comparing the following observed
kinetics with the related model readouts (ROs):

(RO1) The total number of cells A serves as a control and is described in our model by
A(t) = S@t)+ Im(t) + In(t) + P(t), (2.9)
attimeteRand me{R, V, F}.

(RO2) The number of experimentally identified IFIT1deGFP — DENV-faR double-negative
cells are represented by S(t) defined as

S(t) = S(t)+Ig(t). (2.10)
S(t) comprises both susceptible cells and already infected but not yet virus repli-
cating cells I, which implies that the DENV-faR fluorescence protein is not yet
visible in the host cell.

(RO83) The observed DENV-faR positive cells correspond to the calculated number of
virus replicating cells Ig(t).



(RO4) The detected ISG expressing IFIT1deGFP* — DENV-faR™ cells are modeled by
the protected cells P(t).

(RO5) Since IFN-X is the most prominent type of IFN in our cell system, we equate
the measured level of secreted IFN-) with the simulated amount of released IFN
F(t).

To exploit both independently performed experiments, the model dynamics listed in
(RO2)-(RO5) are simultaneously fitted to the related time course data of experiment
1 and 2 by allowing only the initial number of susceptible cells Sy to vary between
experiments, while all other parameters are identical.

As optimization method we use the trust-region-reflective least-squares algorithm of
Matlab’s optimization toolbox [S10] by calling the Fortran program of our DDE system
with a binary Matlab executable (mex) subroutine. Since we compare several compo-
nents of the model with their respective data, the chi-squares statistic x? of the model
parameters 6, k=1,..., Np, is given by

X2(01""’9NP) - %C: % (dj(ti)_yjo(-ji(li(g)l,...,QNp)) |

j=1 i=1
where N, stands for the number of model parameters and N, denotes the number of
model components y;(t; | 61,...,0x,) that describe the associated data set (t;,d;(t;))
with the measurement error o;(t;) fori=1,...,Nyand j = 1,..., N; at N; observation
times. To account for the fact, that the data used for fitting were obtained via different
measurement techniques and comprise small as well as large values, we assume for
the measurement errors a 10% deviation band relative to the measured kinetic data:
oj(ti) =0.1d;(t;). To find a reliable best fit parameter set of our optimization problem

(x*(61,...,0n,)). (2.12)

(2.11)

min
{0k|k=1,....Np}

the least-squares minimization has to be repeated for a large number of different ran-
dom initial values. It turned out that the calculation of the DDE system (1.6) is consid-
erably more time consuming than solving comparable large ODE systems. To speed
up calculation, we utilized Matlab’s parallel computing toolbox to run several optimiza-
tion processes simultaneously on a computer cluster. Due to parallelization we were
able to repeat the optimization procedure for more than 10* different random initial
values. The resulting best fit correctly reproduces the observed kinetic data of both
experiments (Fig 6C).

In order to assess the uncertainties of the best fit parameter values, we calculate
likelihood-based confidence intervals for the estimated parameters by applying the
profile-likelihood method [S12]. Likelihood-based confidence regions dependent on
a threshold in the likelihoods @, (1 - a, DF), which represents the (1 - a) quantile of
the x2-distribution with DF degrees of freedom. As we aim to compute the confidence
bound of each individual parameter, the degree of freedom in this case is equal to 1.



The (1 -a) confidence interval (Cl) of a single parameter 6;, [ € {1,..., Ny}, encloses a
set of parameter values v and is defined as

le{—a) = {V | AXZZ(V) SQXQ(]-_Q71)}7 (213)
with
A2 (V) = min 201,...,0,1,v,0041,...,0
X, (V) (OulmTo Nkl (x*(6 -1, V, 0141 No)) o1
- min 2(0,,...,0 i '
{0n|k=1,....Np} (@1, 0))
To compute
min(XglfiX) = mi (X2(917" '79l—17V7 9l+17' '-79Np)) (215)

n
{Orlk=1,...,Np;k=l}

from equation (2.14), we fix the parameter 6;, [ € {1,..., N,} systematically to differ-
ent values v around the estimated optimum and solve the minimization problem with
respect of the remaining parameters {0 | k = 1,..., Np;k # 1}. Afterwards, the term
szl(u) (cf. (2.14)) is obtained by subtracting the fitted x-value minimized over all pa-
rameters (2.12) from the calculated min(xj ;,)-value. The most common confidence
region Clgsy follows from equation (2.13) by taking into account the corresponding
quantile of the x*-distribution Q,2(95%,1) = 3.8. By plotting Axj (v) and detecting
those values v for which Axgl remain below the respective quantile-based thresholds,
the confidence intervals can be determined directly from the graph of the profile likeli-
hood.

The application of the profile-likelihood method for our model regarding the parameters
that were estimated based on the kinetic wildtype DENV data set shown in Fig 6C,
reveals that all these parameters are identifiable within narrow confidence bounds (Fig
7A and S1 Table). Since the model is constrained by experimental wildtype DENV
data, we can utilize it to make quantitative predictions about the competition between
spreading DENV and IFN-induced antiviral protection.

To validate the parameterization, we examined whether key parameter values agree
with the results of independent measurements. As described in the main text, we
found that the estimated time delays of virus replication (cf. Fig 5) and virus production
(cf. Fig 7B) comply with experimental data that were not used for model fitting.

In addition to the time delays, we also investigated the parameterized IFN response
in the model using an IFN stimulation experiment, in which A549-1FIT1deGFP reporter
cells were treated with IFN-) (cf. S3B Fig). To imitate the initial conditions of this exper-
iment, we consider a number of susceptible cells Sy along with the applied extracellular
IFN concentration Fy = 10 ng/ml. When simulating the IFN response, we assume that
the recognition of extracellular IFN F' turns susceptible cells S into protected cells P
with the protection rate . The removal of IFN by cellular uptake and, to a lesser



extent, by extracellular degradation is taken into account through the IFN degradation
rate dg. The dynamics of this small submodel at time ¢ € Ry is defined by the following
ODE system:

S(t) = -reF(t)S(t) S(0) = Sp
P(t) = rpF(t)S(t) PO) = 0 (2.16)
F(t) = —deF(t) F(0) = F.

We fix Sy, rr and d to the fitted values given in S1 Table. The ODE system (2.16) was
then solved using a standard ODE solver of MATLAB based on explicit Runge-Kutta
method [S13, S14]. The direct comparison shows a good agreement between the
predicted fraction of protected cells and the observed IFN-responding cells (Fig 7C).
This test indicates that the parameterized model describes the IFN response correctly
and, additionally, underscores the accuracy of the estimated protection rate r¢.

Taken together, the validity of the model is corroborated by the parameterization within
narrow confidence intervals from wildtype DENV data and, additionally, by the consis-
tency with key results of independent experiments that were not considered for model
fitting.

3 Detection of DENV mutant-specific parameters by utilizing the knowledge from
wildtype fitting

Driven by the question, which antiviral factors have the greatest influence on viral fit-
ness, we compared wildtype DENV with the E217A DENV mutant, which is unable to
modify its RNA genome by 2’-O-methylation [S15]. Our studies show that the E217A
mutant elicits faster IFN production resulting in an earlier onset of the IFN response,
and barely spreads in IFN-competent cells (Fig 8B, C). In order to analyze the dif-
ferences between wildtype and attenuated E217A mutant infections on a quantitative
level, we utilize the population-based model parameterized exclusively with wildtype
DENYV data (cf. section 2) to identify E217A mutant-specific parameters.

Motivated by findings from the literature, we argue that four parameters might vary be-
tween wildtype DENV and E217A mutant infections. Since studies demonstrate that
IFIT1 inhibits translation of mutant RNA [S16, S17], the generation of new infectious
virus particles could take longer or occur at a lower rate in the E217A mutant. More-
over, as other reports show that 2’-O-unmethylated RNA is detected more readily by
intracellular pattern recognition receptors [S18], infected cells might also produce IFN
faster or to a larger extent.

For the parameter optimization regarding the E217A mutant, we therefore take advan-
tage of the established wildtype DENV parameter set (cf. S1 Table) and estimate only
the four just mentioned potentially E217A mutant-specific parameters (MP) in line with
their respective constrains:



(MP1) Delay of mutant virus production 7y mut > 7R

(MP2) Mutant virus production rate vy myt < vy

(MP3) Delay of IFN secretion after mutant virus infection 7
(MP4) IFN secretion rate after mutant virus infection vg myt > vg.

In the same way as in the wildtype DENV case, we determine the E217A mutant-
specific parameters (MP1)-(MP4), by fitting the model dynamics listed in (RO2)-(RO5)
(cf. section 2 page 5) simultaneously to the related time-resolved data set consisting of
two independent flow cytometry measurements along with ELISA quantifications post
DENV-faR E217A mutant infection (cf. Fig 8B, C).

We repeated the optimization procedure for more than 5x103 different random initial
values in the same way as for the data concerning wildtype DENV. The obtained best
fit provides a good match with the observed kinetics after DENV-faR E217A mutant
infection of both experiments (cf. Fig 8C).

Again, applying the profile-likelihood method, we calculate the 95% confidence inter-
vals of the estimated E217A mutant-specific parameters (MP1)-(MP4) according to
(2.13). The resulting narrow confidence bounds confirm the identifiability of all four
parameters. More importantly, the comparison of the confidence regions reveals that
only two of the four E217A mutant-specific parameters differ strongly from their wildtype
DENYV values: The time delay of IFN secretion is ~24 h shorter and the virus produc-
tion rate is ~8-fold lower after E217A mutant infection in contrast to wildtype DENV (S2
Table and Fig 8D).

4 Extension of the population-based model to elucidate the paracrine and au-
tocrine effects of IFN

The prediction of the data-based quantitative model, that a decreased virus production
and an accelerated IFN induction make the difference between wildtype DENV and the
attenuated E217A mutant, raises the questions how much impact either factor individ-
ually has on the outcome of infection, or even if the two factors are possibly related
to each other. The latter question is prompted by our observation that stimulation of
infected cells with IFN in an early phase after infection causes a reduction of virus
replication and consequently virus production (cf. Fig 1A, B and S1 Fig). However,
this autocrine effect of IFN must be temporally limited, since stimulation with IFN has
no further influence after a certain time period post infection.

To analyze the impact of IFN on infected cells, we expand our established model (1.6)
by assuming that the recognition of IFN in a certain time window of IFN responsiveness
7p after viral entry inhibits the production of new infectious virus particles (Fig 9A, solid
green inhibition link). Technically, we calculate the probability of infected cells to sense
IFN in the time period 7p based on techniques from the field of the survival analysis
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Mathematical Modeling Fig 1. Scheme of the modeled antiviral effect of IFN on al-
ready infected cells. To incorporate into the model an antiviral impact of IFN on infected
cells, we assume after the time point of infection ¢, of susceptible cells (gray oval) an IFN-
responsive time window 7p. Inactive infected cells (black oval), which receive no IFN stim-
ulus in the time interval [¢;¢, + 7p] become at ¢, + 7y virus producing cells (dark blue oval)
and release new infectious viral particles with the rate constant vy (upper sequence). In
contrast, virus production is inhibited in inactive infected cells, which recognize IFN in the
time frame [¢; ¢, + 7p] (light blue oval; lower sequence).

[S19, S20, S21].

At first, we consider a non-negative, continuous random variable T, which represents
the waiting time until an infected cell recognizes IFN. The probability P to receive no
IFN stimulus within the time span ¢ € Ry is defined as

T non-negative

i
P(T >t) T continuous exp| - / h(z)dzx |, (3.17)
0
where h denotes the so-called hazard function [S20]. In our case, the hazard function
is equal to the time-dependent probability rate of recognizing IFN given by
h(t) = rpF (1), (3.18)

with the rate of IFN-induced inhibition of virus production rp and the amount of extra-
cellular IFN F(t) (Fig 9A, solid green inhibition link).

The distinction whether or not an infected cell is stimulated by IFN within the time
window 7p after the time point of infection ¢, > 0 (Mathematical Modeling Fig 1) is
relevant at the time
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t

— t-1y

)+ Ty
. (3.19)

Therefore, we compute the probability that IFN is not recognized up to the time

t+7p (Sig)t—Tv-f-Tp (3.20)

under the condition that there was no stimulation through IFN before the time point of
viral entry. The condition is necessary, since sensing of IFN before infection leads to
antiviral protection in our model. The probability of an infected cell to produce virus
without antiviral IFN action is thus calculated as

P(T>t|+Tp|T>t|) Ez:?:; P(T>t—Tv+Tp|T>t—Tv)
B P(T>t-1y+1mpnT >t—1y)
- P(T>t-1v)
~ P(T>t-1y+7p)
- P(T>t-1v)

o s Frn)

0 0

t—Ty+Tp t—1v
(3':18)exp(— f TPF(x)dJ:)exp(f rpF(:E)dJ:)

0 0

t=(1y—7p)
exp|-rp ] F(x)dz

t—1v

=  exp(rp[F(t-1v)-F(t-(rv-7p))]), (3.21)
where .%# denotes the antiderivative of F'.

The probability (3.21) enables us to discriminate between infected cells 1,5, which

receive no IFN stimulus and thus produce virus with the rate constant vy after n,, and
infected, non-virus producing cells Iyp, which recognize IFN within the time window 7p
(cf. Mathematical Modeling Fig 1). Accordingly, we include I, Iyp and % in our
DDE model (1.6) and obtain the following DDE system with four time delays:
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S(t) = —ryV()S(t) - reF(£)S(t) +psS(t)

Ig(t) = rV(#)S(t) -ryV (t-7R)S(t - TR)

[j(t) = rV(t-mR)S(t-R)

() = wV()SE) -V (t-nv)SEt-1v)
Ls(t) = exp(rp[Z1(t) - Zo(H)]) WV (t-1v)S(t - 7v)
Iyp(t) = (1-exp(rp [Fi(t) - Fo(t)])) ryV (¢ - 7v)S(t - 7v)
(t) = nV()S®)-ryV(t-T1)S(t - 7F) (3.22)
Ie(t) = rV(t-78)S(t-7F)

P(t) = reF(H)S(t)+ppP(t)

F(t) = velp(t) - deF(t)
F1(t) = F(t-1v)
Fa(t) = F(t-(rv-1p))

V(t) = wip®)-dvV(t).

The associated initial value problem of the extended model is defined by the DDE
system (3.22) for time ¢ > 0 together with initial conditions, which we specify in the
following. At the starting time ¢y = 0, only the number of susceptible cells S(0) = Sy
and the extracellular viral load V' (0) = V, are non-zero. For those variables, that have
retarded arguments, we use as history functions the constant zero function, that is,
S(t)=0,V(t)=0aswellas F(t) =0 for ¢t <0.

The full delay-differential equation model (3.22) is numerically solved by applying the
RADARS solver written in ANSI Fortran-90 [S3]. To obtain a precise solution, we im-
plemented the time-dependent standard Jacobian matrix and the Jacobian matrix with
respect to the retarded variables within the RADARS5 framework.

The results of the IFN-stimulation experiment depicted in Fig 1B indicate an IFN re-
sponsive time window 7p of approximately 6 h post infection with wildtype DENV at a
MOI of 10 TCIDsp/cell. The infection with such a high viral dose causes a synchro-
nized infection of the entire cell population. Since the delay of virus replication after a
non-synchronized infection is expected to be delayed, we simulate low dose infections
with a time window of IFN responsiveness of 7p = 8 h. Additionally, we fix the rate of
IFN-induced inhibition of virus production rp = 10% r¢, as we suspect that restriction of
virus replication is achieved faster than antiviral protection.

According to findings from the literature, IFIT1 is one of those ISGs that can be induced
directly after viral recognition in an IFN-independent manner [S22, S23]. An early IFN-
independent IFIT1 induction could thus also be contributing to the predicted decreased
virus production in IFIT1 reporter cells after E217A mutant infection. To incorporate
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IFN-independent antiviral effects in the model, we assume that virus producing cells
release new infectious virus particles with a reduced rate vy it = 0.5 vy post DENV
mutant infection, which represents half of the virus production rate vy after infection
with wildtype DENV.

The full model (3.22) with the mentioned modifications listed in S3 Table matches the
observed kinetics of both wildtype and mutant DENV replication and IFN response
equally well as the original model (1.6). Moreover, the full model allows us to study the
competition between spreading DENV and the antiviral immune response induced in an
autocrine as well as paracrine manner by secreted IFN. In addition, we can separately
analyze the effect of IFN on infected or naive cells by setting either rp or r¢ to zero and
subsequently compare the relative importance of both antiviral effects on a quantitative
level (cf. main text and Fig 9B).
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