
The detailed description of the neural mass model and the computational processing of 

EEG-like data are summarized below. The specific parameter meanings and their values are listed in 

Table A. 

Table A. Symbol definitions and model constants  

Symbol Description Value Unit 

Ge,i peak amplitude of EPSP,IPSP 0.18, 0.37 mv 

γe,i neurotransmitter rate constant 0.3, 0.065 ms-1 

e base of natural logarith 2.71828  

h
rest 

e,i  cell resting potential -70, -70 mv 

h
rev 

e,i  cell reversal potential 45, -90 mv 

N
β 

ee,ei total number of local e→e,e→i synaptic connections 3034,3034  

N
β 

ie,ii total number of local,i→e, i→i synaptic connections 536,536  

ge,i sigmoid slope at inflection point 0.28, 0.14 mv-1 

S
max 

e , S
max 

i  maximum value for sigmoid function 1.1 ms-1 

τe,i membrane time constant 40, 40 ms 

θe,i Inflexion-point voltage for sigmoid function -60, -60 mv 

Δt timestep used in simulation 0.1 ms 

N
α 

ee,ei total number of synaptic connections from distant e populations 4000,2000  

 < pee,ie >  exogenous(subcortical) spike input to e population 1.1,1.6 ms-1 

< pei,ii >  exogenous(subcortical) spike input to i population 1.6,1.1 ms-1 

The simulation parameters are chosen according to the nomenclature of Steyn-Ross et al. [1] 

 

A schematic representation of the neural mass model is given by Figure A. Spatially averaged 

excitatory neurons (E) and inhibitory neurons (I) are taken into account to subsume the actual 

activity of cortical cells. The action played by excitatory neurons is marked with blue lines. There are 

three connectivity types within a cortical macrocolumn — short-range (intracortical) connection, 

long-range (cortico-cortical) connection and exogenous (subcortical) connection. The four jjk SN 
 

( )}(),({, neuroninhibitoryineuronexcitatoryekj  ) are the short-range spike-rate contributions 

generated by within macrocolumn activity, the subscript jk means kj  , i.e. type j  acting on 

type k . The 


jkN  constants are the number of kj   local connections, and the jS  are their 

mean firing rates. The eiee  ,  are long-range excitatory spike-rate inputs from distant 



macrocolumns elsewhere in the cortex, and they are expressed in the form of eeeee SN  , eeiei SN  . 



ekN  are the number of distant connections from excitatory populations. Only the excitatory 

populations are considered to form long-range connections to other macrocolumns. The four jkP  are 

inputs entering the macrocolumn from subcortical sources. 

  

Figure A. A schematic illustration of the neural mass model. A macrocolumn with its excitatory 

neurons (E) and inhibitory neurons (I) are shown, as well as the short- and long- range cortical and 

extracortical connections. 

The original nonlinear partial differential equations were simplified as two first-order ordinary 

differential equations by making three assumptions: the cortex is homogeneous; all inputs to the 

soma are regarded as fast variables that have already reached steady states before the soma can make 

a reaction; input to neuronal populations is added as the sum of a mean value plus a stochastic 

variation about a mean value.  

The simplified equations are written as, 
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Where rest

eh and rest

ih are the resting potentials for excitatory and inhibitory neurons, respectively. 

jkI  are the total j  type cell voltage inputs to k  type synapses. jk  are dimensionless weighting 

factors for those voltage inputs, representing that excitation and inhibition are regulated by different 

ions and that the corresponding magnitude of the postsynaptic currents will depend on the active 

state of the neuron.  

Each jkP  is written as its mean value (  jkP ) plus a stochastic variation about the mean, 

 )(tPPP njkjkjk    (3) 

  is a dimensionless scale factor introduced to ensure that the stochastic fluctuations always remain 

small. Here we choose 01.0 . Each )(tn (n=1,2,3,4) is an independent, Gaussian-distributed 

white-noise generator of zero mean and delta-function covariance.  

jkI  and jk  are expressed by: 
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Where   is the revised effect-site concentration of propofol ( effrC ). )( ee hS , )( ii hS are sigmoidal 

transfer functions that map from soma voltage to the output pulse rate (in pulses per second): 
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By setting the derivatives to zero ( 0,0 
dt

dh

dt

dh ie ) and removing the noise ( 0)( tn ) in 

equations (1)-(2), the steady-state values of the excitatory and inhibitory neurons can be located by 

solving equations (1)-(10), as shown in Fig 5(A) in the main text. The steady state voltages for 

excitatory and inhibitory neurons are denoted as 0

eh  and 0

ih , respectively. 

Substituting equations (3)-(10) to (1)-(2), equations (1) and (2) can be rewritten as the sum of 

drift terms and random noise terms [1], 
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where 1F , 2F  are drift terms, 
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ie  ,  are random noise terms, 
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The above equations cannot be solved analytically. Then we consider numerical simulations of 

these equations. To perform time-series simulations, the Euler method was used to update each of the 

variables, the equations in simulated form are: 
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The drift components in equations (13) and (14) in simulated form become: 
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    We simulate the continuous time series )(t  by an equivalent discrete time series n  at time 

values tntn  , t  is the time step, with zero mean and delta variance. The random component of 

the derivative in simulated form, arguably, is proportional to 
t

1
 [2]. The continuous noise 

functions (15) and (16) become the following discrete noise time-series: 
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t  is selected based on the range of parameters considered here. For too large a time step, the 

numerical routine is unstable, leading to an incorrect time signal. However, too small a time step may 

increase the computing complexity. So the largest time step that could be safely used was 0.1ms [2]. 

The parameters are chosen according to the nomenclature of Steyn-Ross et al.[1]. The parameter 

values are based on experimentally measured physiological quantities. A more in depth discussion of 

these equations can be found elsewhere [3-5]. Solving equations (17)-(22), the time series of 

excitatory and inhibitory populations can be derived. Subtracting 0

eh from the time-series voltages of 

excitatory population, the difference is regarded as the simulated EEG.  
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From the above descriptions we know that the fluctuations of excitatory neurons around steady 

states are taken as the source of sEEG. It can be seen from Figure A and the above equations that the 

excitatory neurons and inhibitory neurons influence each other, the voltages of inhibitory neurons 

affect excitatory neurons by the sigmoidal transfer function )( ii hS . 
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