
SUPPLEMENTARY NOTE 
 
GQT index scalability. GQT creates two additional indices (BIM and VID) that allow variants satisfying 
an analysis to be quickly returned in VCF format (Supplementary Fig. 6). The storage cost of the GQT 
indices is marginal with respect to the size of the underlying VCF file and its size continues to diminish as 
the cohort size grows since most new variation discovered will be very rare. To demonstrate this effect, 
we compare the GQT index and PLINK (cite) BED encoding of the Phase 3 of the 1000 Genomes project 
(2,504 individuals and 84,739,846 variants) to the size of the uncompressed VCF for the full dataset (Fig. 
2a). We also include the size of a BCF compressed version of the 1000 Genomes VCF as a point of 
comparison for the size of the GQT index.  
 
Both the BCF and PLINK encodings exhibited constant compression across population sizes with a 9.6× 
improvement (138.4 GB) and 24.1× reduction (55.1 GB), respectively, for the full 2,504 individuals. In 
contrast, the reduction in the relative size of the GQT indices steadily improved as the number of 
individuals and variants increased, yielding a 92.7× (14.3 GB) reduction for 2,504 individuals and 
requiring, on average, only 0.54 bits per genotype. The BCF encoding of the 1000 Genomes dataset 
included extensive metadata such as genotype likelihoods and allelic read depths for each individual and 
variant. It is encouraging that when we removed this metadata (BCF* in Supplementary Fig. 7a) in 
order to provide a direct comparison to the storage requirements for all of the GQT indices, the 
compression rates were nearly identical. This demonstrates that for genotypes from large human 
cohorts, the GQT compression strategy is on par with the LZ77 algorithm and it is not sacrificing 
additional compression. 
 
Query performance. The typical tradeoff for high data compression is the time spent decompressing 
compressed data prior to analysis1. We designed our indexing strategy precisely to avoid this tradeoff 
and achieve efficient queries of cohorts involving thousands to millions of individuals. To demonstrate 
this, we compared the query performance of GQT to BCFTOOLS and PLINK. First, we compared the 
time required to compute the alternate allele frequency among a target set of 10% of individuals from the 
1000 Genomes VCF (Fig. 2a). Whereas BCFTOOLS required 1517.5 seconds, both GQT and PLINK 
were substantially faster, requiring 58.4 seconds (26.0 fold speedup) and 156.3 seconds (9.6 fold 
speedup). Importantly, GQT’s performance improved as the number of individuals increased, whereas 
PLINK’s performance was relatively flat. Moreover, matching variants are identified almost instantly and 
thus, the majority of GQT’s runtime is spent emitting the VCF results of the query. For example, when the 
GQT “count” option is invoked to simply return the count of variants matching the query (i.e., without 
returning the full variant records themselves), the runtime dropped to 4.2 seconds. We also compared 
the time required to identify rare (AAF < 1%) variants among a subset of 10% of the individuals (Fig. 2b). 
In this case, GQT was up to 45.8× faster than BCFTOOLS (51.5 seconds v. 2360.5 seconds). PLINK 
was not included in the rare variant search comparison because it does not support that function. 
 
GQT’s query performance relative to existing methods continues to improve for even larger datasets. 
When considering the Exome Aggregation Consortium (ExAC) variant dataset (9.36 million exonic 
among 60,706 human exomes), the GQT index was only 0.2% the size of the VCF (28GB v. 14.1 TB), 
reflecting a storage requirement of merely 0.38 bits per genotype. Moreover, rare variants were found in 
only 2.1 minutes (9.98 seconds when excluding the time required to report the variants), reflecting a 
443.5 fold improvement over BCFTOOLS (931.4 minutes). Furthermore, based on simulated datasets 
involving 100 to 100,000 genomes (Methods), it is clear that GQT’s data compression and query 
performance continues to improve dramatically with larger cohorts. While simulating variants from one 
million or more individuals is computationally intractable for this study, extrapolation suggests that GQT 
indices involving a cohort of a million genomes will yield query performance that is at least 218 fold faster 
than BCFTOOLS (Fig. 2c,d). 



 
 
Pedigree analyses. Using the GQT query interface, we screened for high confidence de novo mutations 
in the CEPH 1473 pedigree sequenced as part of the Illumina Platinum Genomes project 
(Supplementary Fig. 5a). To accomplish this, we employ a combination of genotype and phenotype 
query pairs. For example, “-p "sample_id = 'NA12878'" -g "HET"” will select only those variants 
where NA12878 is heterozygous.  Any subsequent genotype/phenotype query pair will further restrict the 
final set of variants to the subset meeting the extra conditions.  For example, the query “-p 
"sample_id = 'NA12878'" -g "HET" -p "maternal_id = 'NA12878'" -g "pct(HET 
HOMO_ALT)>=0.3"” includes two pairs and will return only those variants where NA12878 is 
heterozygous and where at least 30% of her children are also non-reference.  
 
A preliminary search for candidate de novo mutations in the extensively studied NA12878 daughter 
involves screening for variants that are homozygous for the reference allele in NA12878’s parents, yet 
are heterozygous in NA12878. GQT identifies 11,172 such candidates from more than 8 million total 
variants in 0.04 seconds (Supplementary Fig. 5b). A more sophisticated GQT query recognizes that 
true de novo mutations in the germline of NA12878 should be inherited by her offspring, reducing the set 
of candidates to 3,002 (Supplementary Fig. 5c). Excluding suspicious variants that lie in low-complexity 
regions2 reduces the set of de novo mutation candidates by another 12% (N = 2,659). Since GQT reports 
results in valid VCF format, we were able to use other existing software to filter the results.  In particular, 
we used BEDTOOLS to filter out any variants fell within a low complexity region as identified by Li2 
(Supplementary Fig. 5d). While this yields many more candidates than would be predicted by the 1.2 × 
10−8 per generation base pair mutation rate observed in the CEU pedigree3, the 1000 Genomes Project 
employed additional filters based on genotype likelihoods, proximity other variants, and other properties 
of the sequence alignments3. Moreover, the intent of this analysis is to demonstrate GQT’s analytical 
power in the context of both large studies of unrelated individuals as well as family-based studies of 
disease. 
 
The resulting GQT command was: 
 
gqt query -i cohort-illumina-wgs.vcf.gz.gqt -d ceph1463.ped.db \ 
    -p "sample_id in ('NA12891','NA12892','NA12877')" \ 
    -g "HOMO_REF" \ 
    -p "sample_id = 'NA12878'" \ 
    -g "HET" \ 
    -p "maternal_id = 'NA12878'" \ 
    -g "pct(HET HOMO_ALT)>=0.3" \ 
| bedtools intersect -v \ 
    -a stdin \ 
    -b btu356_LCR-hs37d5.bed/btu356_LCR-hs37d5.bed \ 
> NA12878_de_novo.vcf 
 
 
 
 
 
 
 
 
Burden tests. Although the GQT index is structured based on individuals rather than variant loci, it is 



nonetheless capable of efficiently computing the fundamental measures that underlie many locus-centric 
statistics such as burden tests. For example, the C-alpha burden test4 measures the difference in the 
number of times an allele is observed in cases and controls versus a binomial expectation of the allele 
counts in the population as a whole. We have implemented the C-alpha statistic in GQT; once case and 
control populations are defined via the GQT query interface, a standard summary statistic (in this case 
minor allele frequency) is computed for both subpopulations at each variant site. The statistics for each 
variant are then aggregated across a given locus and normalized by the variance to produce the final 
statistic for each gene or locus. We emphasize that C-alpha is merely a representative example of the 
several burden tests that follow this computational pattern and are therefore candidates for future 
integration into the GQT toolset.  
  



SUPPLEMENTARY FIGURES AND TABLES 
 

 
 
Supplementary Figure 1. Sorting variants by allele frequency improves compression. (a) A graphical 
comparison of the genotype distribution of individuals (rows) and variants (columns) before and after sorting. These 
data represent genotypes from the 1000 Genomes Project, phase 3, for a portion chromosome 20. (b) The run 
length distribution for unsorted and sorted genotypes. (c) The distribution of the number of runs for sorted and 
unsorted data.  In both cases the second peak is composed predominantly of individuals from African decent 
(AFR); 604/661 AFR are in the second peak in the sorted case, and 640/661 AFR in the unsorted case. 
 
 
 
  



  
 

 
Supplementary Figure 2. Bitmaps enable rapid genotype comparisons en masse. (a) A bit array marks the 
existence of one genotype state (for example, homozygous reference; “0/0”) for all variants. Similarly, a bitmap 
index is composed of a distinct bit array for each possible genotype state.  (b) Example genotypes in VCF format 
are presented for three individuals (I1, I2, I3) at 10 variant sites (V1-V10). A bitwise AND of the bit arrays 
corresponding to the heterozygous genotype yields the variant that is heterozygous in all individuals. 
  



 

 
 
Supplementary Figure 3. Efficiency improvements for genotype comparisons when using a bitmap index. 
(a) When considering genotypes in ASCII format (e.g., VCF), an algorithm searching for the set of variants that are 
heterozygous in all individuals must operate on every genotype for each for every individual separately. (b) In 
contrast, when genotypes are represented with a bitmap index, where a set of genotypes are encoded into a single 
CPU word (for brevity, only the bit arrays associated with the heterozygous state are shown), bitwise logical 
operations can be used to operate on all of the genotypes in the word with a single operation. This example 
assumes a word size of 8, but modern CPU support up to a 64-bit word and the speedup of bitmaps will be linear to 
the word size. For the 24 genotypes given here (3 individuals, 8 genotypes each), the ASCII-base algorithm 
executes the “if” statement 24 times, while the bit-wise algorithm executes the logical AND (“&”) only three times, 
with both algorithms producing equivalent results. 
  



 
 
 

 
 
Supplementary Figure 4.  A comparison of binary encodings and associated bit-wise logical operations. (a) 
Two bit arrays are given in three different binary encodings: the uncompressed bit array (in 7 bit words) on top, 
followed by the run-length encoding (RLE) and word-aligned hybrid encoding (WAH), which each add an additional 
bit as part of the encoding to make 8 bit words.  RLE maps each set of consecutive bits to a new value that uses 
one bit for the run value, and the remaining bits for the number of bits in the run. WAH maps bits to one of two 
types of values: those that include runs and those that encode the raw binary. The first bit in a WAH value indicates 
if the value encodes a run (the fill bit). If that bit is set then the second bit gives the run value and the remaining bits 
give the run length in number of words (i.e., not number of bits as in RLE). If the fill bit is not set then the 
remaining bits are the uncompressed binary values. (b) The logical OR for the three encodings is given. For the 
uncompressed binary, the OR follows bit for bit across both values. For RLE, the logical OR is undefined (without 
inflation) because the two encoded values are no longer aligned and have different lengths. For WAH, the values 
are aligned based on their run length, then the logical OR is performed (in this case) between the value bit and the 
associated uncompressed values. 
 
 
 
  



 
Supplementary Figure 5. De novo mutation discovery in the CEPH 1463 pedigree. (a) The CEPH 1463 
pedigree. Our analysis is focused on the discovery of de novo mutations in NA12878, the daughter of NA12891 and 
NA12892. (b) A GQT query for de novo mutations based on the expected genotypes (homozygous for the 
reference allele) in NA12878’s parents, as well as an expected heterozygous genotype in NA12878. (c) True de 
novo mutations in NA12878’s germline should be passed on to 50% of her offspring, on average. Allowing for 
genotyping error and binomial expectation, we filter for more confident de novo mutation candidates by requiring 
that the apparent mutation allele is passed on to at least 30% of NA12878’s children. (d) A GQT query that further 
filters candidate mutations by excluding those lying in low complexity regions of the genome. 
 
 
 



 
Supplementary Figure 6. BCF and GQT file composition.  VCF files are composed of a variant data section and 
a sample genotype section and each of these include both core information (e.g. variant position and alleles, and 
genotype, respectively) and extra metadata. BCF encodes both sections into a binary format, and then compresses 
the data using blocked LZ77 compression.  GQT uses three files: a BIM file that contains all variant data 
compressed with LZ77, a GQT file with WAH-compressed genotypes (without metadata), and a VID file that stores 
the mapping between the allele-frequency variant order and the original source VCF variant order. PLINK (not 
shown) omits all metadata, storing uncompressed binary encoded for genotypes in a BED file and variant positions 
in a BIM file. 
 



 
 
Supplementary Figure 7. GQT compression performance for 1000 Genomes data (Phase 3) and simulated 
genomes.  Compression ratios describe the fold reduction in file size relative to an uncompressed VCF file. GQT 
represents solely total size of the GQT genotype index. GQT* reflects the total size of the GQT genotype index plus 
the size of the BIM and VID indices. BCF* represents the size of the full BCF file including genotype metadata, 
whereas BCF omits genotype metadata. Lastly, PLINK reflects the size of PLINK v1.9 BED and BIM files. (a) File 
size reduction for 1000 Genomes Phase 3, which is comprised of 2,504 individuals and over 84 million variants. (b) 
A comparison of BCFTOOLS, GQT, and PLINK for simulated genotypes on a 100 Mb genome with between 100 
and 100,000 individuals. 
 
  



SUPPLEMENTARY TABLE 
 

Experiment Tool 
MGP 

(28 samples;  
68.1 million 

variants) 

DGRP 
(205 samples;  

6.1 million 
variants) 

1KGp3 
(2,504 samples; 

84.7 million 
variants) 

ExAC 
(60,706 samples; 

9.3 million 
variants) 

File size (Gb) 
BCFTOOLS 14.94 2.99 138.41 2119.7 

PLINK 2.37 0.47 55.10 142.29 
GQT  2.97 0.43 14.33 27.96 

Alternate allele 
count time 

(min.) 

BCFTOOLS 2.79 0.43 14.30 544.30 
PLINK 0.41 0.05 2.61 20.10 
GQT 1.07 0.04 0.97 1.50 

Rare variant 
search time 

(min.) 

BCFTOOLS 4.44 0.64 39.34 931.40 
PLINK NA NA NA NA 
GQT 0.75 0.03 0.86 2.10 

 
Supplementary Table 1. The performance of BCFTOOLS, PLINK, and GQT across four cohorts of different 
sizes and sample populations.  This analysis included three whole-genome data sets from three different 
species: mouse genome project (MGP), Drosophila genome reference panel (DGRP), human from 1000 Genomes 
phase 3 (1KGp3), and a whole-exome for human from the Exome Aggregation Consortium (ExAC). 
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