Supplemental material for: Perturbations in dopamine synthesis lead to discrete physiological

effects and impact oxidative stress response in Drosophila

Marley E. Hanna¹, Andrea Bednářová^{1,2}, Kuntol Rakshit³, Anathbandhu Chaudhuri⁴, Janis M O'Donnell⁵ and Natraj Krishnan^{1*}

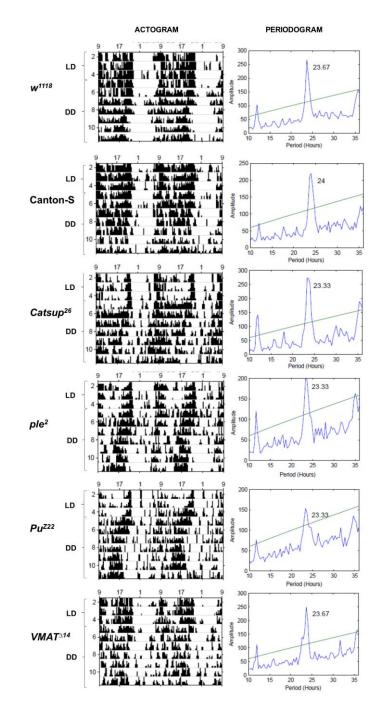
¹Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.

²Institute of Entomology, Biology Centre, Academy of Sciences and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.

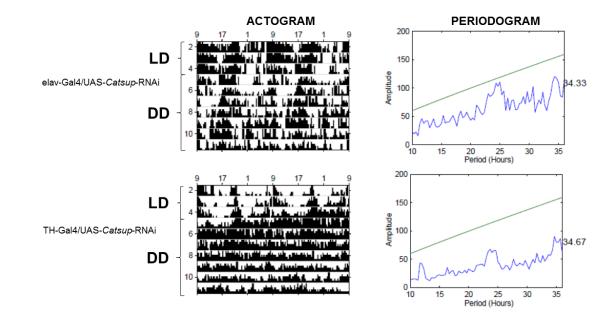
³Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.

⁴Department of Natural Sciences, Stinson Mathematics and Science Building, 3601 Stillman Blvd, Stillman College, Tuscaloosa, AL 35043, USA

⁵Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA


*Corresponding author: Phone: 662-325-2978, Fax: 662-325-8837

E-mail: <u>nk260@msstate.edu</u>


Supplemental Table 2.1: List of primers and their sequences used in this study.

Gene	Forward primer (5'-3')	Reverse primer (5'-3')
rp49	ACG TTG TGC ACC AGG AAC TT	CCA GTC GGA TCG ATA TGC TAA
Cat	AGA TGC TGC ATG GTC GTC TGT TGT TCT	TCC ATC CCG CTG GAA GTT CTC AAT
MnSOD	ACA TCA CCG ACT CCA AGA TTA C	TTG CCC GTT GAC TTG CT
CuZnSOD	TAA ATT GAT TAA TTC ATT CG	ACA TCG GAA TAG ATT ATC GC
GSTO1	CAT ATG AGC AAT ACT CAG CAC TTA ACT AT	GGA TCC CTA CCC CAA TTT GAC ACG TTT G
GSTO3	CAT ATG AGT TCT GGT AAA CAT TTG GCC AA	GGA TCC CTA AGC CAG CAG ATC GTA GTT T

Figure S1: Representative double-plotted actograms and periodograms of w^{1118} , Canton-S, *Catsup*²⁶, *ple*², *Pu*^{Z22} and *VMAT*^{$\Delta 14$} flies ~ 6-8 days after adult eclosion. Flies were entrained for 3 days in 12h:12h LD (Light/Dark) cycles before being maintained in constant darkness (DD) for 7-10 days. Actograms and periodograms were generated using ClockLab (Actrimetrics). The Y-axis on actograms represents days, whereas the top axis denotes hours in military time (for further details refer to the text).

Figure S2: Representative double-plotted actograms and periodograms of *elav*-Gal4/UAS-*Catsup*-RNAi and TH-Gal4/UAS-*Catsup*-RNAi flies ~ 6-8 days after adult eclosion. Flies were entrained for 3 days in 12h:12h LD (Light/Dark) cycles before being maintained in constant darkness (DD) for 7-10 days. Actograms and periodograms were generated using ClockLab (Actrimetrics). The Y-axis on actograms represents days, whereas the top axis denotes hours in military time (for further details refer to the text).

