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Ecological Niche modelling
We relied on ecological niche modeling (ENM) tools to model the ancestral distributon of the 

target species. ENMs have been extensively use to identfy Pleistocene refugia (e.g. Waltari et al.,  

2007; Rodriguez-Sanchez & Arroyo, 2008; Planas et al., 2014), since they facilitate the correlaton 

of  occurrence  data  with  presumed  environmental  predictors,  and  the  projecton  of  such 

relatonships to different tme-periods and/or geographic spaces (Elith et al., 2006). 

Occurence points and sampling-bayas grid

An exhaustve bibliographic investgaton was conducted in the scientfc literature (Brignoli, 1971, 

1972, 1985; Thaler, 1976; Hormiga, 1994; Arnò & Lana, 2005; Isaia et al., 2011 among others) to 

recollected  the  occurrence  records  for  Pimoa  rupicola  (Simon,  1884)  (Araneae,  Pimoidae). 

Localites  for  which  we  were  not  able  to  obtain  precise  lattude/longitude  coordinates  were 

excluded from the ENM analysis.  Material of P. rupicola cited in several works actually belong to 

the  potental  new  species  (Pimoa "n.sp.")  identfed  in  this  study.  Localites  of  P. n.sp.  were 

reassigned on the base of the reexaminaton of the original material cited in literature (when adult 

spiders were available), on the genetc data and on geographic base. The map of occurrence point 

for which we were able to obtain precise lattude/longitude is reported in Fig. 1.

In a next step, we designated a sampling bias grid (Phillips  et al.,  2009;  Syfert  et al.,  2013) to 

correct our occurrence dataset for potental spatal autocorrelaton and haphazard sampling (i.e. 

variaton in sampling effort). Each cell of the grid was constructed with a width of 30 x 30 arc-

seconds, corresponding to the resoluton of the present climate rasters. In each cell of the grid we  

deleted  all  the  occurrence  points  of  Pimoa but  one.  Doing  so,  we  cleaned  our  dataset  from 
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duplicates (see Newbold, 2010) and hence the over-expression of certain environmental variables 

(i.e.  given the resoluton of  the raster,  spatally  clumped localites  are  characterized by equal  

climatc parameters). At the same tme, the cleaning of the dataset from clustered points allowed 

us to compute the model with a more geographically scatered set of occurrence points across the 

landscape (see Yackulic et al., 2013).

Fig. 1- Occurrence points for Pimoa rupicola and P. n.sp.

Environmental variables

We obtained present-day climatc data (19 "Bioclim variables", tab. 1) and alttude a.s.l. from the 

WorldClim website (www.worldclim.org), at a spatal resoluton of 30 arc-seconds (~1 km). We 

chose this resoluton because of the sub-contnental distributon of the two Pimoa lineages. The 

twenty  environmental  variables  were  stacked  in  a  single  raster  via  the  command  stack 
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implemented in the Raster R package (Hijmans, 2014). 

We obtained downscaled and calibrated (bias corrected) Paleoclimatc data for the Last Glacial  

Maximum (~22,000 years ago; hereinafer LGM) from three different simulatons available from 

Global Climate Models (GCMs): Community Climate System Model (CCSM), MIROC-ESM and the 

New  Earth  system  model  of  the  Max  Planck  Insttute  for  Meteorology  (MPI-ESM-P). 

Reconstructon were made available by the CMIP5 (Coupled Model Intercomparison Project phase 

5; online at: htp://cmip-pcmdi.llnl.gov/cmip5), at a resoluton of 2.5 minutes. Although the LGM 

climate is relatvely well known (Ivy-Ochs et al., 2008), we used simulatons from different sources 

to  account  for  unavoidable  uncertainty  associated  to  paleo-reconstructons  (Kageyama et  al., 

2001). Similarly, we did not downscale the LGM rasters to obtain the same spatal resoluton of the 

present-day climatc rasters (i.e. 30 arc-sec). These predictons, in any case, should be considered 

as broad estmates of potental past conditons given the uncertaintes associated (e.g. Planas et  

al., 2014).

Table 1 - Climate variables from the WorldClim website (www.worldclim.org)
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Variable Description Unit

Bio1  Annual Mean Temperature °C

Bio2  Mean Diurnal Range (Mean of monthly (max temp - min temp)) °C

Bio3  Isothermality (BIO2/BIO7) (* 100) °C

Bio4  Temperature Seasonality (standard deviation *100) °C

Bio5  Max Temperature of Warmest Month °C

Bio6  Min Temperature of Coldest Month °C

Bio7  Temperature Annual Range (BIO5-BIO6) °C

Bio8  Mean Temperature of Wettest Quarter °C

Bio9  Mean Temperature of Driest Quarter °C

Bio10  Mean Temperature of Warmest Quarter °C

Bio11  Mean Temperature of Coldest Quarter °C

Bio12  Annual Precipitation mm

Bio13  Precipitation of Wettest Month mm

Bio14  Precipitation of Driest Month mm

Bio15  Precipitation Seasonality (Coefficient of Variation) mm

Bio16  Precipitation of Wettest Quarter mm

Bio17  Precipitation of Driest Quarter mm

Bio18  Precipitation of Warmest Quarter mm

Bio19  Precipitation of Coldest Quarter mm

Alt  Altitude a.s.l m



Collinearity

For each of occurrence point, we extracted the punctual values of the 20 explanatory variables 

from the stacked present-day climatc raster (Fig. 2). Pairwise Pearson correlatons (r) among the  

different extracted covariates evidenced a high level  of  inter-correlaton between most of the 

Bioclimatc variables  extracted for  each of  the occurrence points.  Collinearity  was handled by 

dropping,  one  by  one,  the  Bioclimatc  covariates,  untl  a  set  of  un-collinear  covariates  was 

obtained. We used the variance infaton factors values (VIFs; Zuur et al., 2009, 2010) to select the 

covariates. The fnal set of  explanatory variables introduced in the ENM model  consisted of 3 

variables, namely Annual mean temperature (Bio1), Temperature annual range (Bio7) and Mean 

temperature of the driest quarter (Bio 9). 

Figure  2  - Boxplots  showing  the  range  of  climatc  parameters  extracted  from  the  3  Bioclim 

variables introduced in the ENMs. 

Algorithm and model calibration (M region)

The MaxEnt algorithm (Phillips  et al., 2006) was chosen because it does not require the use of 

absence points, which avoids the problems associated to unreliable absence record (e.g. Jimenez-

Valverde  et  al.,  2008).  Additonally,  comparatve  studies  have  been  shown  that  MaxEnt 

outperforms other ENM/SDM techniques (see Elith et al., 2006). Firstly, we computed the model 

on the set of non-collinear variables selected afer data exploraton (present climate) and on the 

occurrence  points.  We  computed  two  separated  ENMs,  one  for  Pimoa n.sp.  and  one  for  P.  

rupicola,  respectvely.  ENMs  were  calibrated  within  the  M region  (Barve  et  al.,  2011),  i.e.  a 

geographic  area  that  we  hypothesized  has  been  accessible  to  the  two  species  over  their 
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evolutonary history (see Saupe et al., 2012 for a detailed discussion on the topic). The M region 

was calculated a priori, by buffering the occurrence records of Pimoa n.sp. and P. rupicola by 70 

km, the estmated area that is covered by the dispersal capability of the species. 

Partition Finder results

Partton Finder (Lanfear et al., 2012) selected the fullcodon as the best partton scheme for the 

alignments of both species. The best models for each partton are reported in the Tab. 2.

Table 2 - Best model selected for each subset partton for Pimoa and Troglohyphanes alignments 

according to lowest AIC in Partton Finder (Lanfear et al., 2012).
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Gene Gene

cox1 1  K81uf+G    cox1 1 TrN        

cox1 2  HKY+I      cox1 2 TrN+I      

cox1 3  HKY+I      cox1 3 F81        

ITS-2 4  JC+I       ITS-2 4 JC         

ITS-2 5  K80+I      ITS-2 5 JC         

ITS-2 6  JC         ITS-2 6 JC         

ITS-2 7 ITS-2 7 JC         

ITS-2 8  K80+I      ITS-2 8 JC         

ITS-2 9  JC+I       ITS-2 9 K80        

ITS-2 10  K81+I      

Pimoa n. sp. - P. rupicola Troglohyphantes

Partitions Best Model Partitions Best Model 

 TVMef+G    
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