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Supplementary Material 1. The neural models 

We use several types of neural models in calculations. Hereby the main features of the models are 

described in detail.  

A1.1. McCulloch-Pitts (MCP) neural model.  

In this case, the behavior of the i-th  ( 1,...,i N ) neuron is described by its phase function,  ( )i t . 

There are two constants: the duration of excitation, w, and the duration of refractoriness, r. If    ( )i t r   

and   
1

( ( ( )) ) 0
N

ji j ij
w x t 


   , then   ( 1) 0i t   , otherwise    ( 1) ( ) 1i it t    . The output of the 

neuron ( ) 1ix t  , if ( )i t w  , otherwise ( ) 0ix t  . Usually, w = 1 and r = 0. 

The important rule for the MCP neural networks is the rule of updating the values of  ( )  and ( )i it x t . 

The rule, described above, is known as synchronous dynamics: the phases of all neurons are updated 

simultaneously. Sometimes, we used the asynchronous random dynamics. In this case, the updating is 

performed in cycles of N updates. In each cycle of updates, the order of neurons is selected randomly 

and, in this order, neurons are updated one by one; the freshly updated neuron takes part in updating the 

next neurons in that cycle of N updates.  

To explore the set of equilibrium states of the neural networks we introduce the accommodation 

mechanism into neural network dynamics (Dunin-Barkowski, Osovets, 1995). With this purpose in mind 

we accept that in moments, when neuron switches into the excited state, its threshold gets increases of a 

constant value  , while it decreases all the time exponentially with the time constant  toward the final 

value of 0 : 
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t  is the moment of the i-th transition of the neuron into the excited state and  
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Thus, when the neural network stays for a long time in a fixed stationary state, the Hopfield energy of 

this state increases and the network activity moves to the adjacent state with lower energy. 

A1.2. LIF model 

The dynamics of these neurons is described by the following equation 

   
( )

( ) ( ) ( ) ( )m

m m r m syn inh Ca

du t
u t u R i t i t i t

dt
        (A1.1) 

with  
( )

( )Ca

Ca Ca

di t
i t

dt
   , 0.1 sCa     (A1.2) 

Here, ( )mu t  - membrane potential, m m mR C   - membrane time constant, 1 nFmC  and 10 MΩmR   

- capacitance and resistance of the membrane, 0 mVru  - resting potential of the membrane, ( )syni t  - 

the sum of excitatory synaptic currents, ( )inhi t  - the inhibitory current, ( )Cai t  - the accommodation 

current, which depends on activity of neurons. This current is considered to reflect the action of Ca
++

-

dependent K
+
 channels.  With each spike  ( )Cai t  gets an increase of  1 nA. The neuron generates an 

impulse (spike) when its membrane potential ( )mu t attains threshold thu . Afterwards, its membrane 

potential momentarily jumps to zero value, while threshold gets increase of 1000 mV and then decreases 

according to equation:  
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       (A1.3) 

with  2 msth  , and 
0 10 mVthu  . Each incoming impulse momentarily adds 0.3 nA  to ( )syni t . In the 

absence of incoming impulses,  ( )syni t  decays exponentially to zero with time constant of 25 ms.  

The inhibitory current,  ( )inhi t , is the same for all excitatory neurons in the network and represents a 

global variable which controls the activity of the network. It is controlled by the following equations:  

( )
( ) ( )fe

e e j

j f

di t
i t N t t

dt
        (A1.4) 
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,  (A1.5) 

Variable ( )ei t  represents the excitatory input to inhibitory neurons, 10 mse  , 
inhk const ,  

0 10 nAeI  . 

The synaptic delays between neurons were uniformly randomly distributed in the range 1.0 – 5.0 ms.  

 

Supplementary Material 2. Number of inborn attractor states for d=0 

The mean value of matrix elements is: 
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. (A2.1) 

We suppose that M  is proportional to 2 2/N L , i.e. 2 2( / )M N L  . When M  , we have:  

 1 1 1

M

e
M


  
     

 
. (A2.2) 

Now, let the network have at the input one of its theoretical attractor patterns. Then, the probability, that 

a „foreign‟ neuron have L excitatory inputs is  

{ } L

iP h L   . 

So, the probability that at least one of (N-L) foreign neurons will get L  units of excitation is: 

{ :  } 1 (1 ) 1 (1 )L N L L N

err inactive iP P i h L            

Taking 1/errP N , we have: 

1
1 (1 )L N

N
   , 

and, after non-complicated transformations, leaving only first order (by 1/N) terms, we have: 

 
2/LN  . (A2.3) 

Comparison of (A2.2) and (A2.3) finally yields: 

 

  2/ln 1 LN    . (A2.4) 

Table A2 gives numerical values of for a set of N values at L=20. Although computational estimates of 

give the constant value 1  , one can see that the analytical reasoning does not diverge too far from 

the computational experiments estimate. Thus, Table A2 shows that theoretical estimates of for 

5000N  are less than two times smaller than 1.0. 

 

N 100 500 1000 2000 3000 500 

 1.0 0.77 0.69 0.63 0.6 0.56 
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Supplementary Material 3. Distances between states in 1 d bump attractor obtained with help of 

model molecular markers 
Fig. A1 presents a fragment of the layout of all neurons in order of the order numbers of the 

markers, which they contain (as each neuron has k markers, each neuron is presented k times in 

this layout). The neurons become excited in the same order, while the activity propagates over 

the bump attractor.  We now consider  the distance between some initial state,   
0X  and states 

which are following it,    
1 2 3, , ,... tX X X X , (t=1, 2, … M).  

   
Fig. А1 

Fig. A2 shows the inner product   
0( , )tX X  of two states plotted against t. It is obvious that in the 

beginning, the intersection between 0X     and tX   decreases linearly from L to 0. Then, it stays  0 up to   

t D . For  t D , the intersection is random. Its mean value can be obtained as follows. Each neuron 

of the first state takes later part in (k-1) states That means that for any neuron which is excited in 0X , 

the probability to be excited in tX  (for large t) is  

( 1)k L
p

M L





. 

That means that the average intersection between 0X and tX will be 2( 1) /pL k L M   

 

  

 
Fig. А2 

 

The Hamming distance between the states is connected with intersection of them according to the 

relation  0 0( , ) 2 ( , )t tH X X L X X  , where from we get for t D   

( 1)
2 1

k L
D L

M

 
  

 
. 

With L=15, k=3, M=900, we have 29D  , which coincides with the results of the computational 

experiments.  
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Supplementary Material 4. Evaluation of kc  in one-dimensional bump attractors  

As each neuron takes part in k attractor states, each line of the matrix T contains about 2 k  positive 

(equal to 1) matrix elements. The probability of positive matrix element is 2 /k N . That means that the 

probability of firing of one excessive neuron, which is not active in 
0X , is (2 / )Lk N . On the contrary, 

the probability that this will not happen for any of the remaining  N L  neurons is  1 2 /
N L

L
k N



 
 

. 

In computational experiments, the critical value 
ck was defined as the value of k, such that five random 

networks with a given k show perfect cycles.  Thus, for 
ck  we obtain an equation:  

2 1
1 1

5

N L
L

ck

N




  
    

   
 

And finally, for the critical value of k, we have: 

2 5
c L

N
k

N
 ,   (A4.1) 

Factor 5L N  is of the order of 1 and changes very slowly with N. So, (A4.1) yields practically linear 

dependence of ck  on N. (cf. Fig. 17). In particular, we have: 

at L = 15, N = 300,  15 5 300 1.62  , k = 7.7 (in experiment, k = 5); 

at L = 15, N = 1200,  
15 5 1200 1.79  , k = 28 (in experiment, k = 21). 

 

Supplementary Material 5 Trade-off relations for network attractors 

This section uses the computational experiments first presented to the conference 

“Neuroinformatics 2013” (Karandashev, 2013). For neural network applications, it is important 

to know how the network behaves depending on the values of its parameters. In particular, it is 

important to know how stable the attractor points are. Fig. A3 shows the “error” in states, as a 

function of N, M at   , obtained in Monte Carlo computational experiments. The 

synchronous L winners dynamics (Supplementary Material 1) of the network was used and the 

“error” was considered to be the Hamming distance between the experimentally obtained stable 

state and the “theoretical” attractor point which served as the initial condition. It can be seen that 

the error grows with M. For M less than a critical value, crM , the “theoretical” attractor points 

are stable.  

20L 
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Fig. A3. The “error” in neural network stable states 

N and M are the number of neurons and the number of marker types. Each type of markers has 

the same number,  L=20, of elements. In each case, plotted are values averaged over all M 

“theoretical” attractor points. 

Fig. A4 shows dependence of   /cr crM N   on N. The linear empirical approximation shows 

that with increasing N, the value of   increases   2N  (when L is constant):   
2( / )crM N L . 

 

 

Fig. A4. The critical values of ratio   /crM N as a function of N 

Computational experiments (dots); broken line is the least square regression.  L=20. 

The mean value of matrix elements is  
2 2/ijT ML N     (A5.1) 

When network resides at attractor state, 
mS , the L neurons which are active get the following 

inputs: 

1,

1
N

m

act ij j

j j i

h S L
 

   Τ      (A5.2) 

Input to the rest ( N L ) of the neurons is approximately:  

inact ijh L Τ   (A5.3) 

crM
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Here ijΤ  is the average value of matrix element of Τ . The distinction between the right parts of 

(A5.2) and (A5.3) enables the neural network discriminate between attractor and non-attractor 

states. Supplementary Material 2 gives the analytical reasoning, which qualitatively explain the 

data of computational experiments, displayed in Figs. A3 and A4. 
 

It is known that not all sets of points can be separated by a plane into two subsets. For example, 

any four points in 3-d space can be divided by a plane in any combinations, but for five points 

that can not always be done.  

A general result related to this problem has been obtained by E. Gardner (Gardner, 1988). It 

states that if there are randomly chosen 2R points in the R-dimensional space, painted randomly 

in two colors, R points in each group, then at R  , with probability approaching 1, exists the 

plane which separates the colored points by colors. But when the number of points exceeds 2R, 

the probability of separation approaches 0 as R  . This result states that at maximum, we 

can separate only 2R points in R-dimensional space. In the case of separating a few points from 

the others, the situation changes. Let us have M points in R-dimensional space. Let then divide 

them into two parts: k points in one of them and M k in the other. In this case (formula (40) of 

(Gardner, 1988)): 

   
1

1 ln 1
с

m m
  

  
 . 

Where, in our case, с  and m are correspondingly /с M R    and 1 2 /m k M  . So the 

expression for relations between R, M, and k is: 

2 ln( / 2 )R k M k       (A5.4) 

We tested this theoretical estimation in computational experiments for a set of different values of 

k and R (Fig. A5):  

 
Fig. A5. Data of computational experiment on relation between M, R and k 
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The linear separation was performed with the help of Rosenblatt algorithm. The broken line 

corresponds to equation (A5.4). Parameters are shown in the figure.  

So, the number of patterns M when k is fixed is an exponent of R. Further, we use  

( / ) 0.01k ML N M  , and R in the range 100 – 500. 


