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ADDITIONAL DATA FILES 
Additional file 1: Patient Table. Distribution summary of the quantitative and qualitative clinical 
variables characterizing each sample of the cohort. 

Additional file 2: Kinome target genes. List of the genes targeted in the DNA sequencing experiments.  

Additional file 3: RPPA epitopes. List of the epitopes targeting proteins and phospho-proteins in the 
RPPA experiments. 

Additional file 4: GSEA results. Results of GSEA analyses using the gene signatures and the pathways 
for the RATHER and METABRIC datasets. 

Additional file 5: Mutated genes. List all genes with candidate somatic variants found in any sample. 

Additional file 6: Recurrent CNA. Multi-level recurrent CNA identified by ADMIRE. 

Additional file 7: OncoScape. Prioritization scores of each gene tested using mutation, CNA, gene 
expression and RPPA data. 

Additional file 8: Differential drug response. Results of the differential analysis for 88 drugs comparing 
the cell lines response in the HR and IR subtypes. 

Additional file 9: RPPA survival. Results of the survival analysis for the proteins and phospho-
proteins. 

Additional file 10: METABRIC and RATHER-samples. List of samples part of both RATHER and 
METABRIC study. 

Additional file 11: Factors components. Weights of the input contributing to each factor. 

EXTENDED MATERIAL AND METHODS 

STUDY DESIGN 
All patients with an ILC (based on pathology report) treated in the NKI-AVL since 1980 were 
extracted from the hospital database. We excluded all patients for which no fresh frozen (FF) tissue 
was available in the NKI-AVL tissue bank. We selected consecutive tumours without neo-adjuvant 
treatment and with a preference for those also without adjuvant hormonal therapy. All patients 
diagnosed with ILC (based on pathology report) treated in the Addenbrookes Hospital Cambridge UK 
since 1997 and with available FF material were included in this study. Clinical data were extracted 
from the Addenbrookes Hospital Cambridge database. In some cases, we also sourced FF tissue from 
adjacent matched normal tissues.  Subsequently, we collected matched formalin fixed paraffin 
embedded (FFPE) tissue blocks for TMA construction. The NKI-AVL and Cambridge medical ethical 
committees approved the study and the use of anonymized archival tissue in this study. The cohort 
consists of 144 samples. 

SURVIVAL ANALYSIS 
Since our survival analysis focused on associations with biological characteristics of the tumour, we 
excluded for survival analysis those patients that had another cancer diagnosis within 10 years before 
the diagnosis of ILC since it would be unclear to which tumour the event belongs. We considered only 
breast cancer specific survival, due to the presence of competing events and (distant) recurrence free 
survival. To plot patient stratification, we used Kaplan-Meier survival curves. P-values reported in 
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these figures are calculated with the log-rank test on the Kaplan-Meier estimator. All associations with 
survival were tested in Cox models including clinical parameters: Cox proportional hazards regression 
model was stratified by biobank and, unless otherwise specified, fitted with commonly used clinical 
variables: tumour size, grade, number of positive lymph nodes, treatment (hormonal, radiotherapy 
and/or adjuvant chemotherapy) and age at diagnosis. Association of a variable with survival was tested 
with a likelihood-ratio test comparing a model including clinical variables over a model including 
clinical variables and the variable tested. To assess the association of the EMT factor with survival in 
different datasets, we used the first principal component of the probes targeting the two major genes 
reported by Anastasiou et al.1: COL11A1 and THBS2. Association of this first principal component 
with survival was tested in a Cox-model as described above. In the METABRIC dataset, we looked at 
breast cancer specific survival over the following clinical variables: grade, size, stage, number of 
positive lymph nodes, age at diagnosis and subtype. Luminal samples were selected based on having a 
PAM50 annotation, as provided by METABRIC, of Luminal A or B. 

AFFYMETRIX SNP 6.0 ARRAYS 
The protocol was as presented earlier2. Briefly, DNA was extracted from ten 30 µm sections each from 
fresh frozen tumours using the DNeasy Blood and Tissue Kit and the miRNeasy Kit (Qiagen, Crawley, 
UK) on the QIAcube (Qiagen) according to the manufacturer’s instructions and then hybridized to 
Affymetrix SNP 6.0 arrays per the manufacturer’s instructions (Affymetrix, Santa Clara, CA) at AROS 
Applied Biotechnology (Aarhus, Denmark).  

Each sample was preprocessed using the PennCNV pipeline for Affymetrix arrays3. Genotyping calls 
were obtained with Affymetrix Power Tools (APT) software using the Birdseed algorithm 
(http://www.affymetrix.com/partners_programs/programs/developer/tools/powertools.affx). Allele-
specific signals were extracted and a canonical genotype clustering file was generated using all 
samples. Each array was then wave-corrected using the built-in algorithm in ASCAT v.2.24 and copy 
numbers were called with ASCAT v2.2 using information from the matched normal when available. 
The samples were classified into the 10 integrative clusters from METABRIC using the iC10 package 
with default parameters and the "scale" normalization method5. We used copy number data (segmented 
means obtained with DNAcopy) and expression data from the Agilent arrays. The overall goodness of 
fit of the correlation was 0.772.  

Ploidy of samples was estimated by ASCAT. We found two clusters of samples with similar ploidy: 
one cluster with ploidy around two, and one cluster with ploidy around 3.8 (Figure S23). Therefore we 
consider the samples with an ASCAT estimated ploidy higher than 3 as tetraploid. If a sample is 
tetraploid, the expected copy number is four, so we want to consider regions with a copy number of 
four as being copy number neutral. Copy number of all segments in the tetraploid samples was divided 
by two prior to the employing ADMIRE to find recurrent aberrations. We then applied ADMIRE 6 to 
identify recurrent alterations, clipping at a CN level of 6 and with an FDR threshold of 0.05. For all 
recurrences found, a CN was calculated per sample by taking the median CN of all segments 
overlapping a recurrence. Differential copy number between the subtypes was determined by a 
Wilcoxon permutation test (R coin package) because of the large number of ties. When both a focal 
copy number difference and a larger overlapping copy number difference were found, we only report 
the larger one. 

DNA CAPTURE LIBRARY AND NEXT-GENERATION SEQUENCING 
DNA sequencing was performed on an Illumina HiSeq 2000 platform. For each sample, Illumina 
TruSeq index libraries were constructed according to manufacturer’s instructions (Illumina) before 
being enriched by capture with a biotinylated RNA probe set targeting the human kinome and a range 
of cancer related genes (Agilent Technologies, 3.2 Mb). We sequenced 10 to 12 samples on a single 
Illumina HiSeq 2000 lane to generate 55bp paired-end reads. On average, we obtained 26,985,771 
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unique reads on each run. The average kinome coverage (mean bait coverage) for the whole 
sequencing dataset is 133X, ranging from 36 to 258. On average, 91% of the target positions are 
covered by 20x. We aligned the raw sequencing data with the Burrows-Wheeler Aligner (BWA) 
version 5.10, backtrack algorithm, to the human genome (Ensembl 37) removing duplicate reads and 
reads with mapping quality <60. We used SAMtools mpileup to identify variants found in the targeted 
region +/- 100bp. We then employed the vcfutils.pl script provided with SAMTools to filter variants 
using the varFilter set to defaults with the exception of turning off the -2 float option. We called the 
subsequent variants using SAMTools and followed the following filtering process: we kept only 
variants matching the following criteria: i) root-mean-squared mapping quality MQ>40 ii) variant 
frequency > 0.1 iii) total coverage > 10 iv) variant coverage > 5 v) fraction of reads with the alternative 
allele occurring in one read direction > 7.5 % of the reads for the given direction (to avoid strand bias). 
15806 variants passed these criteria. We kept only variants predicted to alter the proteins using the 
Ensembl variant effect predictor (VEP) and the following categories: missense variant, stop gained, 
frameshift variant, inframe insertion, inframe deletion, splice donor variant, splice acceptor variant, 
initiator codon variant (i.e. removing synonymous variants). 3122 variants remained, which we 
classified into 2169 germline and 953 somatic, based on the following rules: 1) if a variant is present in 
at least one of the normal samples of our in-house pool, it is considered germline; 2) if a variant is 
reported in a database (dbSNP, Exome Variant Server esp5400 database) and it is not present in 
COSMIC, it is considered germline; 3) otherwise, it is considered somatic. To assess the significance 
of the mutations in a gene, we compared its mutation frequency to the average background mutation 
rate taken into account its size and using a Binomial test (Mutascape package). All p-values were then 
adjusted for multiple testing with a Benjamini-Hochberg correction. 

A set of candidate somatic variants were selected for validation by sequencing tumour and matched 
normal material, which was extracted from FFPE lymph nodes that were free of tumour cells, or from 
adjacent non-involved breast tissue. These samples were analysed with kinome capture sequencing 
(n=92), traditional capillary sequencing, or with small PCR amplicons targeting the variant that were 
pooled for Illumina based sequencing. Variants found back in the tumour sample and not in the normal 
are validated mutations (VALIDATED); variants found in both the tumour and the normal samples are 
rare germline variants (SNP); variants not found back in the tumour samples are false positive calls 
(ABSENT); finally some variants were tested but the experiment failed (FAILED).  

 VALIDATED SNP ABSENT FAILED TOTAL 

Counts 199 282 9 5 495 

% 40 57 2 1 100 

We note that these numbers relate to variants, but not to their frequency in our dataset. Thus, if 
frequent variants are validated as somatic mutations (as is the case for PIK3CA hotspot mutations), the 
overall percentage of true somatic mutations in the dataset is much higher than in the table. 

Recently, Ross et al. reported a high frequency (30%) of ERBB2 mutations in ILC as compared to 
overall breast cancer (5%)7. Approximately 7% of ILCs in our cohort had mutations in ERBB2. Even 
when restricting our analysis to only CDH1-mutated tumours, as was the case in Ross et al., we still 
have a low mutation frequency (4%). These differences may be due to the fact that we have sequenced 
DNA derived from primary cancers at diagnosis, whereas Ross et al. focused on biopsies from 
progressive disease. One possible explanation for this difference is that ERBB2 mutations are selected 
for during disease progression in ILC. 

RNA SEQUENCING 
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RNA-sequencing data were used to specifically estimate the absolute expression levels of CD4, CD8A 
and CD19 in both subtypes. RNA sequencing was performed on a subset of 68 ILC clinical samples. 
The sequencing was carried out by BGI, Hong Kong, using their stand-specific paired-end 
transcriptome sequencing pipeline. Briefly, for each sample, oligo(dT) magnetic beads were used to 
isolate poly(A) mRNA from the total RNA preparation. A fragmentation buffer was used to cleave the 
mRNA into short fragments. Random hexamer primers were used to synthesize the first cDNA strand 
from these template fragments. dNTPs were removed, and the second-strand cDNA was synthesized 
using buffer, dATP, dGTP, dCTP, dUTP, RNase H and DNA polymerase I, respectively. Short 
fragments were purified with the QiaQuick PCR extraction kit, and resuspended in EB buffer for end-
repair and poly(A) addition. Next, the short fragments were ligated with sequencing adaptors. Uracil-
N-glycosylase (UNG) was used to digest the second cDNA strand. cDNA was size-selected using an 
agarose gel (~200bp insert size) and subjected to PCR amplification to complete the sequencing 
library.  

Paired-end sequencing was carried out for 90 cycles on an Illumina HiSeq 2000 platform. The raw data 
was filtered to remove low-quality reads and reads containing adaptor sequences. Following this step, 
approximately 50 million 90bp 'clean' read pairs were available for each sample. Quality was 
subsequently assessed using FASTQC v0.10.1 (Andrews, 2010). Reads that mapped to ribosomal RNA 
or mitochondrial sequences were removed from subsequent analysis. The remaining read pairs were 
aligned to the GRCh37 genome with TopHat v2.0.108, using Bowtie 2.1.0 as the underlying aligner.  
Reads aligning to Ensembl 75 genes were quantified with featureCounts9, which discounted any read 
pair that aligned to more than one location, or more than one gene at a single location. DESeq210 was 
used to normalize the read counts and derive FPKM values. For the purposes of the FPKM calculation, 
the length of a gene was defined as the number of base pairs covered by any transcript of that gene.  

To determine if the IR and HR subtypes identified by microarray gene expression clustering are 
supported by RNA-seq data, a clustering approach similar to the one for the microarray gene 
expression, described in the next section, was adopted. DESeq2 was used to derive regularized log 
transformed read counts. Genes were ranked by median absolute deviation (MAD; calculated by R 
using the default scaling factor), and the 1000 genes with the highest values were selected for 
clustering. Each gene’s values were standardized using the gene’s mean and standard deviation. Values 
were capped at +/- 2 standard deviations. ConsensusClusterPlus11 was used to cluster the samples into 
two clusters, using the same key parameters used for calculating the microarray consensus matrix 
(10,000 repetitions, average linkage, Pearson distance, 90% gene resampling). The resulting consensus 
matrix was hierarchically clustered using average linkage, and all samples were assigned to a cluster. 
To compare gene expression for immune-related genes between the IR and HR clusters, DESeq2 was 
used to perform a differential gene expression analysis. 

MICROARRAY HYBRIDIZATION 
The RNA for microarray analysis and sequencing was purified using the Qiagen RNeasy micro kit 
(Qiagen, Hilden, Germany) according to manufacture's protocols. Shortly, tumour samples were 
thawed at 37°C (±3°C), put on ice, and homogenized with a polytron and centrifuged. The supernatant 
was transferred to a new tube, 100 ml CHCl3 added and centrifuged again. 250 ml of water phase were 
transferred to a new tube and 350 ml 70% EtOH added. After vortexing, 500 µL were transferred to an 
RNeasy column, washed with RW1 buffer, treated with DNase and eluted with water. RNA 
concentration was determined with Nanodrop and RNA quality with the Bioanalyzer. Samples with 
RIN above 5 (2100 Bioanalyzer, Agilent Technologies) were selected for further analysis. RNA was 
amplified, labelled and hybridized to the Agendia custom-designed whole genome microarrays 
(Agilent Technologies) and raw fluorescence intensities were quantified using Feature Extraction 
software (Agilent Technologies) according to the manufacturer’s protocols.  We checked the quality of 
the array printing, background noise, intensity and array uniformity using a series of 250 control 
probes. In addition, each step of the process of RNA isolation, amplification and expression analysis 



Michaut et al.                                                                                                          Two subtypes of ILC 

8 

    

uses instruments and quality measurements described and developed for the FDA-cleared MammaPrint 
analysis process12.  

GENE EXPRESSION NORMALIZATION AND CLUSTERING 
Feature signal intensities were processed and extracted according to the limma Bioconductor R 
package with background subtraction using an offset of 10. All probe intensities <1 were set as missing 
values. These missing values were imputed by 10-nearest neighbor imputation (R-package impute) 
prior to analysis that cannot deal with them. The log2 transformed probe intensities were quantile 
normalized13 using limma. A principal component analysis showed a batch effect for biobank, and an 
additional batch of samples was identified that were cut at the same time (identifiers RL1110–
RL1130). Both batch-effects were adjusted for using ComBat14. Genes with multiple probes were 
summarized by the first principal component of a correlating subset (all probes with correlation to any 
other probe >0.5), if such a subset existed or by the most variable probe if no such subset existed. After 
summarizing by first principal component, signs and variance were adjusted to match with the most 
variable probe of a gene. Some genes (43) showed a discordant signal over multiple probes, so were 
not summarized and thus kept as separate probes.  

We applied several different clustering algorithms on the top 1000 genes with highest median absolute 
deviance: hierarchical clustering with Pearson distance and ward D1, single, average and complete 
linkage, as well as non-negative matrix factorization (NMF). The ward D1, average and NMF methods 
gave stable clustering results as assessed by consensus clustering. When choosing two clusters, all 
three methods found largely the same two clusters (Figure S3). To define subtypes, we first performed 
consensus clustering with average linkage, two clusters, and 90% feature resampling. Then, the 
consensus matrix was hierarchically clustered with complete linkage and Euclidean distance. Finally, 
the resulting tree was cut at a quarter of maximum height, defining two big clusters. Samples not 
falling into one of these two clusters were not assigned to any cluster (n=42). NMF was done with the 
R package NMF, consensus clustering with the ConsensusClusterPlus package11. To assign cell lines to 
clusters, we normalized together the raw gene expression data of cell lines and tumour samples. Then, 
we applied the same clustering approach described above, but cut the tree at maximum height such that 
all cell lines where assigned to a cluster. All tumour samples assigned to a cluster were assigned to the 
same cluster in both clustering results with and without cell lines. 

REVERSE PHASE PROTEIN ARRAYS 
Three sections of fresh frozen tissue were lysed in hot Laemmli buffer (50 mM Tris pH 6.8, 2% SDS, 
5% glycerol, 2 mM DTT, 2.5 mM EDTA, 2.5 mM EGTA, 1x HALT Phosphatase inhibitor (Perbio 
78420), Protease inhibitor cocktail complete MINI EDTA-free (Roche 1836170, 1 tablet/10 mL), 2 
mM Na3VO4 and 10 mM NaF) and boiled for 10 min at 100°C. Samples were sonicated in a waterbath 
for 1-2min to break the DNA and centrifuged for 10 min at 13000 rpm.  Supernatant was snapfrozen 
and protein concentration was measured (BCA reducing agents compatible kit, Pierce, Ref 23252). 
Samples with sufficient protein concentration (>0.5 mg/ml) were deposited onto nitrocellulose covered 
slides (Sartorius, Grace Biolabs or Maine Manufacturing) using a dedicated arrayer (2470 Arrayer, 
Aushon Biosystems). Five serial dilutions, ranging from 0.5 to 0.03125 mg/ml, and two technical 
replicates per dilution were deposited for each sample. Arrays were labelled with commercially 
available antibodies using an Autostainer Plus robot (Dako). Briefly, slides were incubated with avidin, 
biotin and peroxydase blocking reagents (Dako) before saturation with TBS containing 0.1% Tween-20 
and 5% BSA (TBST-BSA). Slides were then probed overnight at 4°C with primary antibodies diluted 
in TBST-BSA. After washes with TBST, arrays were probed with horseradish peroxidase-coupled 
secondary antibodies (Jackson ImmunoResearch Laboratories, Newmarket, UK) diluted in TBST-BSA 
for 1 h at RT. To amplify the signal, slides were incubated with Bio-Rad Amplification Reagent for 15 
min at RT. The arrays were washed with TBST, probed with Cy5-Streptavidin (Jackson 
ImmunoResearch Laboratories) diluted in TBST-BSA for 1 h at RT and washed again in TBST. For 
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staining of total protein, arrays were incubated 15 min in 7% acetic acid and 10% methanol, rinsed 
twice in water, incubated 5 min in Sypro Ruby (Invitrogen) and rinsed again. The processed slides 
were dried by centrifugation and scanned using a GenePix 4000B microarray scanner (Molecular 
Devices). Spot intensity was determined with MicroVigene software (VigeneTech Inc).  Specificity of 
each primary antibody used in this study was first validated by Western blotting on a panel of cell line 
lysates representative of human tumours of diverse origins. For each sample, one relative protein 
expression level was determined from the technical replicates and the dilution series, using 
Normacurve software15. Normacurve takes into account all samples on the array to draw a robust 
antibody response curve. Next, for each sample, the individual dilution curve is fitted onto this 
antibody response curve and the median expression level is read from the curve. In addition, 
Normacurve applies a spot-by-spot normalization for background fluorescence (using a slide incubated 
without primary antibody), for total deposited protein (using a slide labelled with a total protein stain) 
and for potential spatial bias on the slide15. Bias due to origin of the samples (NKI vs CAM) was 
removed using a median regression approach. In brief, data were scaled by array and the median for 
each sample across all arrays was computed. Then, linear regression was performed of scaled data on 
the median of proteins and residues were set as the final processed data.  

Hierarchical clustering was applied to the RPPA data in order to classify the ILC samples, using the 
Pearson metric and Ward agglomerative method. Four clusters were retained based on the results of 
Silhouette, Davies-Bouldin index and consensus clustering. Enrichment of HR and IR subtypes in the 
RPPA clusters was analyzed by chi-square distribution test. Differentially expressed proteins between 
the clusters were identified using linear models and analysis of variance. 

At the protein level, we identified four clusters, which clearly show different patterns of cell signalling 
(Figure S25). We found that the RPPA clusters showed a non-even distribution in the HR subtype 
(p=0.002), with enrichment in RPPA cluster 4 (p=0.023). RPPA cluster 4 contains 44% (12/27) of all 
HR samples against 25% expected by chance. RPPA cluster 4 over-expresses proteins involved in HR 
signalling, such as P-ERα-Ser118 (p=0.0074), GATA3 (p=0.0012) and 4EBP1 (p<10e-6), compared to 
the three other clusters. In contrast, the IR subtype does not show overlap with a particular RPPA 
cluster, possibly because the proteins characterizing this cluster (cytokines and other immune-related 
genes) have not been measured by RPPA. 

DRUG SENSITIVITY 
We profiled a panel of 15 cell lines identified as ILC-like based on genetic criterion: cell lines have 
either a CDH1 or a-catenin genetic event associated with loss-of-function and are therefore deficient in 
the complex that we consider to be a hallmark of lobular cancers. Drug sensitivity was assessed on the 
Sanger cell line panel (internal version 17). We used the cell lines common in our ILC cell line panel 
and in the Sanger cell line panel. We used cell line AU565 instead of SK-BR-3, which is derived from 
the same patient. Among the 262 drugs, we focused our assessment on 88 agents that had measurement 
in at least three cell lines per subtype. With this dataset, we performed a two-sided t-test between the 
AUC of the dose-response curves of the cell lines in the two subtypes, correcting for multiple testing 
with the Benjamini-Hochberg method. We show the IC50 in the figure for easier interpretation. 

ONCOSCAPE 
We used OncoScape for comparing gene expression, RPPA protein expression, copy number alteration 
and mutations between IR and HR subtypes. Each of these categories is analyzed separately by 
OncoScape. For the first three data types, we compared numerical values for each gene between the 
two subtypes using the Wilcoxon test and defined genes as significantly different if the Benjamini-
Hochberg corrected p-value was < 0.05. For copy number data, OncoScape additionally required that 
the copy number values were significantly correlated (Benjamini-Hochberg corrected p-value < 0.05) 
with gene expression. Upregulation and copy number gains were defined as oncogene-like aberrations 
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while downregulation and copy number losses were defined as tumour suppressor-like aberrations. 
Mutations were analyzed according to the 20/20 rule defined by Vogelstein et al.16. For this analysis, 
missense variants, coding sequence variants and inframe indels were considered as possible oncogene 
mutations, while truncating, frameshift and splice region mutations were considered as potential 
tumour suppressor gene mutations. Also, we required at least five oncogene or tumour suppressor 
mutations for individual genes in order to avoid spurious calls. If a gene was found to be altered in one 
of the four data types mentioned above, it received a score of 1 for this data type and else a score of 0. 
Summing up all oncogene-like aberrations yielded the oncogene score and the sum of all tumour 
suppressor-like aberrations resulted in a tumour suppressor score, respectively. All four categories were 
weighted equally for calculating oncogene and tumour suppressor scores. Additionally, we calculated 
the difference between oncogene score and tumour suppressor gene score and referred to it as overall 
score. We included all genes with available gene expression, RPPA protein expression and copy 
number data in the OncoScape analysis. 

GENE EXPRESSION AND RPPA INTEGRATION 
We first applied a factorization integrating RPPA and gene expression data, and then did a pathway 
analysis on these factors within the gene expression data. To extract concordant data for the 
factorization, we selected only the expression of the 1391 genes that were in the top 10 correlating 
(absolute Pearson’s ρ) with any RPPA epitope. All RPPA epitopes were used. The iCluster method17 
was re-purposed to perform factorization, by foregoing the k-means clustering step at the end. Also, 
uniform sampling was used to select shrinkage parameters and number of factors resulting in the 
highest proportion of deviance. The weights of the features for each factor are provided in Additional 
file 13. We adapted gene set enrichment analysis (GSEA)18 to perform a pathway analysis on the 
factors. We constructed ranked lists of genes per factor by regressing the factors on expression data of 
all genes and then scaling the regression coefficients of a gene by its variance. Overrepresentation of a 
pathway on top of a list was calculated with the weighted GSEA score. Significance was assessed by 
sample permutation. For pathway analyses we used GSEA with the mSigDB v4.0 ‘canonical pathways’ 
(called pathways) and ‘chemical and genetic perturbations’ (called signatures) gene set collections. In 
this analysis, the gene expression signature defined by Anastassiou et al.1 came as significantly 
associated with one of the factors, leading us to the EMT interpretation of that factor. 

GENE EXPRESSION SUBTYPE PATHWAY ANALYSIS 
To contrast both IR and HR subtypes we also used GSEA with the mSigDB v4.0 ‘canonical pathways’ 
(pathways) and ‘chemical and genetic perturbations’ (signatures) gene set collections. Genes were 
ranked by differential expression (signal-to-noise ratio) between the two clusters. To investigate more 
specifically oestrogen signalling, we used the list of up and down regulated genes upon oestrogen 
stimulation of MCF-7 cells as determined by Zwart et al.19. Up or down regulation of these genes 
between the HR subtype, as compared to the IR subtype, was assessed with one-sided Wilcoxon 
ranked-sum tests and a p-value cutoff of 0.05. 451 of 987 up-regulated genes were also up-regulated in 
the HR subtype and 234 of 915 down-regulated genes were also down-regulated in the HR subtype, 
significantly more than expected in both directions (binomial test, p<1e-6). The gene expression 
signature that recapitulates the EMT factor is specific for EMT and not fibroblast as investigated by the 
authors in a mouse xenograft model1. 

DECISION TREE 
Decision trees were built using conditional inference trees20. We used the implementation in the R 
package party. We applied Bonferroni correction, used a p-value threshold of 0.25, a minimum of 20 
samples to split, and a minimum of 10 samples in a leaf node. We wanted to combine high-level 
features and some that were associated with survival to try and get a robust and accurate predictive 
model together with easily to interpretable features. As high-level features, we considered i) mutation 
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rate and CNA rate (proportion of genome altered from the copy number data) as a summary for the 
level of genetic instability and ii) the EMT factor, which was the strongest component of the integrated 
analysis of gene expression and RPPA data. As features associated with survival, we used the epitopes 
from RPPA that showed a significant association with survival with a likelihood-ratio test. The 
thresholds we used to define the final tree are based on a tree trained with clinical variables as 
additional variables. Performance of the tree was assessed by partial likelihood deviance from a leave-
one-out cross-validation. Four different models were tested, all including clinical features: i) the first 
model included only clinical features. ii) The second model also includes the epitopes from RPPA that 
showed a significant association with survival with a likelihood-ratio test. iii) The third model includes 
the clusters assignments from a tree trained on training data. iv) The fourth model includes the features 
used in a tree trained on training data. If the fitting procedure of a model would not converge, we used 
the model including only clinical features instead. 
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SUPPLEMENTARY FIGURES 

FIG S1. VENN DIAGRAM OF THE NUMBER OF SAMPLES PROFILED ON EACH 

PLATFORM 
We performed a comprehensive molecular profiling of 144 untreated tissue samples from primary ILC 
tumours. Specifically, we have used: (i) targeted DNA sequencing to study somatic variants on a set of 
613 genes (Mutations); (ii) SNP6 arrays to study somatic copy number alteration (CNA) profiles; (iii) 
DNA microarrays to study gene expression (GE) and (iv) reverse-phase protein arrays (RPPA) to 
characterize the levels of a selected set of 168 proteins and phospho-proteins. We show here the 
number of samples successfully profiled on each platform for (A) the overall dataset and (B) the subset 
of samples assigned to one of the gene expression subtype described later on. 
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FIG S2. TUMOUR CHARACTERIZATION 
We show here the ER fraction by immunohistochemistry (IHC) and the mRNA level of oestrogen 
receptor ESR1. Expression level of GATA3 is indicated by the colour scale (high level in red). Almost 
all samples are ER positive. Among the samples assessed as ER negative by IHC, the majority show 
ER mRNA expression. In fact, only a single sample seems to be triple negative (TNBC) (bottom left of 
the plot, showing low ESR1 and GATA3 expression). (B) ERBB2 expression split by ER/HER status 
by IHC. The TNBC sample is highlighted in red. 
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FIG S3. GENE EXPRESSION CLUSTERING 
Gene expression clustering is very robust and different methods give highly overlapping results: 
hierarchical clustering with ward (ward) or average (average) aggregation criterion and non-negative 
matrix (nmf) factorization. Based on a gene sub-sampling analysis, we defined the final assignment 
(consensus): samples recurrently associated with the same subtype were assigned to it (IR in orange 
and HR in green), while samples changing subtypes were left unassigned (in grey).

 

 

FIG S4. CD4 AND CD8 STAINING 
We show here the number of cells staining positive for CD4 and CD8 expression. We compare the 
distributions of the samples in the IR and HR subtypes with a one-sided t-test. We also compared the 
log10 of the counts to stabilize the results (higher variance in IR for CD8). In all cases we observe a 
significant difference between the subtypes. 
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FIG S5. VALIDATION STRATEGY 
To validate the IR and HR subtypes discovered on the RATHER dataset, we have used the same 
approach de novo on the ILC samples of two external validation datasets (METABRIC and TCGA): 
robust clustering, identification of two subtypes, identification of differentially expressed genes, 
pathway and signature enrichment analysis (as illustrated for METABRIC below). 
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FIG S6. VALIDATION IN METABRIC AND TCGA 
The differential gene expression is highly correlated between RATHER and METABRIC and between 
RATHER and TCGA. 

 

FIG S7. ENRICHMENT MAPS 
Detailed Enrichment Maps for A) RATHER, B) METABRIC and C) TCGA. 
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FIG S8. SUBTYPE BIOMARKERS IN METABRIC 
Each boxplot illustrate the gene expression of a given probe (e.g. ILMN 1806725) in a given gene (e.g. 
PDCD1) in samples of the IR and HR subtypes in the METABRIC validation dataset. We mapped 
probes to genes with the ReMOAT annotation21. We performed a Wilcoxon test and indicated the 
resulting p-value below each plot. 
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FIG S9. GENE SIGNATURE ENRICHMENTS 
We show here the GSEA results on the gene signatures in RATHER and METABRIC for the A) IR 
and B) HR subtypes. 
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FIG S10. MUTATIONAL LANDSCAPE 
We show here a gene-centric view of the candidate somatic variants. (A) Nine genes are mutated in 5% 
or more of the samples. Three of them are significantly mutated with respect to their size (indicated in 
black). (B) We represent the mutational landscape with a bubble plot created with the Mutascape 
package (under development). Each gene is represented as a bubble, which center is positioned 
according to its size on the x-axis (Gene size in log scale) and its mutation frequency on the y-axis (% 
of samples mutated in the cohort). Bubble size indicates the statistical significance (FDR-adjusted p-
values of a binomial test taking into account the gene size) and colour represents the type of mutation 
pattern, e.g. recurrent or non-recurrent (genes in red tend to have mutations at recurrent positions, 
while genes in white tend to have mutations at unique positions in the various samples).   

 

FIG S11. CDH1 EXPRESSION 
This scatter plot shows CDH1 expression at mRNA (microarray) and protein (RPPA) levels for 
samples with and without somatic mutations in CDH1. 

 

  

2.5 3.0 3.5 4.0 4.5 5.0

0.0

0.1

0.2

0.3

0.4

0.5

Gene size (log bp)

M
ut

at
io

n 
fre

qu
en

cy

CDH1

OBSCN

PIK3CA
TTN

0.5

0.6

0.7

0.8

0.9

1.0

R
ec

ur
re

nt
U

ni
qu

e

B Mutation landscape

AKT1

ALPK2

GATA3

MAP3K1

ATM

OBSCN

TTN

PIK3CA

CDH1

% of mutated samples

0 10 20 30 40

A Mutation frequency

GATA3 ATMAKT1

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−3 −2 −1 0 1 2 3

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

CDH1

mRNA

pr
ot
ei
n

WT
MUT



Michaut et al.                                                                                                          Two subtypes of ILC 

22 

    

FIG S12. PI3K MUTATIONS 
The heatmap shows the presence (in black) of mutations (and 1 loss in PTEN) in members of the PI3K 
pathway in all samples with DNA sequencing data. The PI3K pathway is mutated in 63 of the 138 
tumours (46%) with mutations in AKT1, PIK3R3, PTEN, PIK3CB, PIK3CG, PIK3CD and PIK3CA that 
tend to be mutually exclusive. 
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FIG S13. RECURRENT CNAS SEGMENTS  
This figure shows (A) the average copy number profile and (B) the recurrently altered segments along 
the genome. Dashed lines indicate chromosome changes. The 165 recurrently altered segments were 
identified by ADMIRE6.  

The 1q gain is present in both subtypes, albeit at a lower level in the IR subtype. However, we clearly 
see the absence of the 8q gain in the IR subtype. The same holds for the 11q loss in the HR group. If 
the IR aberrations were of a similar magnitude as in HR, but detected at a lower level due to the 
cellularity difference, we would expect a smaller effect, not a complete absence of the 8q gain and 11q 
loss as we observe. Similarly the 6q loss is present in equal strength in both groups, and the IR group 
shows a loss of 18 not present in the HR group. Taken together, this shows no consistent modulation in 
copy number strength that could be ascribed to differences in cellularity that point towards a 
diminished power to detect aberrations in the IR group. 
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FIG S14. ONCOSCAPE CANDIDATE DRIVERS 
We show here the CNA, gene expression and RPPA values (log fold-change) in the IR and HR samples 
for the candidate drivers identified. 
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FIG S15. SURVIVAL ANALYSIS OF THE IR AND HR SUBTYPES 
We show here the Kaplan-Meier plot of the stratification of the cohort based on the IR and HR 
subtypes. There is no significant difference in survival. 
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FIG S16. CELL LINES  
15 ILC-like cell lines were selected as ILC-like based on genetic criterion. Using the gene expression 

data, we mapped them to both subtypes: 1) IR subtype: 
EVSAT, MPE600, HCC1187, MDAMB468, SkBr3, 
MDAMB453, OCUBF, OCUBM, SkBr5, HCC2218; 2) 
HR subtype: SUM44PE, MDAMB134VI, CAMA1, 
MDAMB330, ZR7530. 12 of these cell lines were screened 
for sensitivity to a large panel of drugs at the WTSI 
(EVSAT, HCC1187, MDAMB468, SkBr3, MDAMB453, 
OCUBF, OCUBM, HCC2218 and MDAMB134VI, 
CAMA1, MDAMB330, ZR7530). 

 

 

 

 

 

 

HR

Cell line

M
D

A
M

B
33

0
ZR

75
30

S
U

M
44

P
E

M
D

A
M

B
13

4V
I

C
A

M
A

1

S
kB

r3
M

D
A

M
B

45
3

O
C

U
B

F
O

C
U

B
M

S
kB

r5
H

C
C

22
18

E
V

S
AT

M
P

E
60

0

H
C

C
11

87
M

D
A

M
B

46
8

IR



Michaut et al.                                                                                                          Two subtypes of ILC 

27 

    

FIG S17. DIFFERENTIAL DRUG RESPONSE 
The boxplots show the drug response (ln IC50) of the cell lines in the IR and HR subtypes for the six 
drugs with FDR<0.25. The red dotted line is the maximum screening concentration. The first three 
drugs in the figure are DNA-damaging agents.  
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FIG S18. SURVIVAL ANALYSIS OF THE MUTATION RATE 
We show here the Kaplan-Meier plot of the stratification of the cohort based on the somatic mutation 
rate. Patients which tumours have a high number of protein-altering somatic mutations (10 and more) 
have a poor survival.  

 

FIG S19. SURVIVAL ANALYSIS OF PROTEINS 
A list of 18 proteins was found to be associated with survival (Additional file 11). In particular (A) 
higher level of eIF4B is associated with poor survival, while (B) higher level of histone H2AX is 
associated with better survival. 
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FIG S20. DECISION TREE PERFORMANCE ASSESSMENT 
To assess the robustness of the result, we performed internal cross-validation of the different models 
and of the features as shown in the flow chart. We assessed the performance of different models with 
leave-one-out cross-validation (LOOCV). Each model is assessed with Cox regression. We illustrate in 
the chart how we computed the partial likelihood deviance. We show the results of the partial 
likelihood deviance for each model. We find that the selected features (mutation rate, eIF4B level) 
perform well, but the cluster assignments not, suggesting that while the cutoffs are specific to the 
dataset, the features are robust.  
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FIG S21. DECISION TREE WITH CLINICAL VARIABLES 
When we add to the inputs the commonly used clinical variables, we find a similar tree with only 
lymph node status as an additional tree node. This results in the selection of a few patients with a very 
high number of positive lymph nodes (>6) and a very poor survival. The good prognosis group (eIF4B 
low) becomes even better with only two events. 

 

FIG S22. POSSIBLE TREATMENT EFFECT 
Possible treatment effect indicated by decision trees in treated / untreated groups. Decision trees 
obtained for patients without hormonal treatment (A) and patients with hormonal treatment (B). The 
samples with low mutation rate and high eIF4B show poor survival without hormonal treatment, but 
good survival with hormonal treatment. We could not test this in a Cox model, because of the limited 
number of samples. 
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FIG S23. SUBTYPE BIOMARKERS AND LYMPHOCYTIC INFILTRATION 
To investigate whether the tumours with high immune gene expression (as represented by CD8A 
expression) show low levels of GATA3, ESR1 and PGR, we scattered each of these proteins against 
CD8A RNAseq counts. The plot shows the CD8A gene expression as FPKM and protein expression of 
A) PGR; B) GATA3; C) ESR1 and D) phosphorylation of ESR1 on Ser118. Samples from 
IR/HR/unassigned are represented in orange/green/black. Orange, green and black dots represent the 
IR, HR and unassigned samples. If high immune response were associated with low expression of these 
proteins we would expect a negative correlation in these plots. This is not the case. In fact, we observe 
no (anti-)correlation at all, but observe both high and low protein expression at both high as well as low 
CD8A mRNA expression levels. This is the case for PGR (Panel A), GATA3 (Panel B), ESR1 (Panel 
C) as well as the phosphorylation level of Ser118 on ESR1 (Panel D). In summary, while CD8A, 
ESR1, PGR and GATA3 are all individually associated with the subtypes, this association does not 
arise due to the different levels of immune cells in the subtypes, as all four proteins show no 
association with CD8A (as marker for immune cells). 
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FIG S24. PD-L1 IMMUNOHISTOCHEMITRY 
We have performed IHC staining and scoring of 29 of our samples with lymphocytic infiltration. Four 
of the samples show some PD-L1 staining. Even if it represents less than 1% of the cells, we note that 
this staining is in both immune and tumour cells. 
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FIG S25. RPPA CLUSTERING 
We show here the heatmap of the RPPA data with sample and epitope names. 

 

 

SUPPLEMENTARY TABLES 

TABLE S1. INTEGRATIVE CLUSTERS ON RATHER 
The RATHER samples were classified into the 10 integrative clusters from METABRIC using the 
iC10 package with default parameters and the "scale" normalization method5. We report here the IR 
and HR subtypes relation to these 10 integrative clusters. Using an Asymptotic Pearson's Chi-Squared 
Test, we find that both subtyping results are associated (p<5e-4).  
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HR 1 4 12 0 1 1 6 10 3 0 

TABLE S2. LYMPHOCYTIC INFILTRATION 
We scored the lymphocytic infiltration on the RATHER samples in the IR and HR subtypes. The 
scoring system was as follows: MILD when lymphocytes are scattered, discrete; INTERMEDIATE 
when lymphocytes are scattered, some areas are dense with lymphocytes; SEVERE when lymphocytes 
are confluent sheets of cells. 13 slides were of poor quality and could not be scored (NA).  

 MILD INTERMEDIATE SEVERE NA 

HR 17 11 10 1 

IR 11 19 21 12 

TABLE S3. IR/HR AND TCGA SUBTYPES 
We report here the overlap between the IR/HR subtypes defined in that work and the subtypes defined 
by TCGA on A) TCGA samples and B) METABRIC samples. On TCGA samples, the Reactive-like 
subtype is associated with the IR subtype, while Immune-related and Proliferative subtypes are 
associated with the HR subtype (Chi-squared p-value<1e-6). On the METABRIC samples, the 
subtypes do not show association (Chi-squared p-value=0.47). 

A: on 115 TCGA samples Immune-related Proliferative Reactive-like 

IR 7 6 37 

HR 36 19 4 

NA 3 0 3 

 

B: on 103 METABRIC samples Immune-related Proliferative Reactive-like 

IR 19 13 17 

HR 14 21 17 

NA 1 1 0 

TABLE S4. INTRINSIC AND INTEGRATIVE CLUSTERS ON METABRIC 
We report here the IR and HR subtypes relation to (A) the intrinsic subtypes of the 103 samples of the 
METABRIC validation set as defined in the original study (one sample was not classified – NC); and 
on the 10 METABRIC integrative clusters considering (B) all the 103 samples, (B) the 57 samples not 
luminal A and (C) the 46 luminal A samples. We find that the luminal A samples are equally 
distributed between IR and HR subtypes. Luminal B is associated with HR, while normal-like is 
associated with IR. IntClust 4, characterized by lymphocytic infiltration, is almost exclusively in IR, 
but also mostly in non Luminal A samples. (E) When clustering only the luminal A samples, we can 
recover the IR and HR subtypes. Thus, IR and HR are distinct subtypes found in luminal A ILC 
samples, with some normal-like component in IR and some luminal B component in HR. 
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A. Intrinsic subtypes in all samples (Chi-squared p=5e-5) 

 

B. Integrative clusters on all samples 

 

C. Integrative clusters on non luminal A samples 

 

D. Integrative clusters on Luminal A samples 

 

E. Clustering the luminal A samples 

METABRIC IR-LumA HR-LumA NA-LumA 

IR 18 0 5 

HR 1 15 5 

NA 0 0 2 

TABLE S5. SYSTEMATICALLY COMPARING IR AND HR SUBTYPES 
The table indicates the odds ratio of the presence of a given feature in the IR versus HR subtypes as 
shown in Figure 1, and the 95% confidence intervals (CI). We performed a Fisher’s exact test and 
corrected the p-values with the Benjamini-Hochberg correction of multiple testing. 

Feature Odds Ratio CI low CI high P-value FDR 

CDH1 2.1 0.141 30.9 0.5948 0.811 

PIK3CA 1.3 0.497 3.3 0.6589 0.811 

PI3K 1.5 0.615 3.8 0.4008 0.641 
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GATA3 0 0 3.5 0.2697 0.594 

ERBB2 6.6 0.618 335.3 0.0783 0.25 

NF1 1.5 0.019 122 1 1 

MAP3K1 4.8 0.369 260.5 0.2972 0.594 

MAP2K4 0 0 2.3 0.1499 0.4 

TP53 1.5 0.019 120.8 1 1 

High 
mutation 

rate 
1.3 0.428 4 0.614 0.811 

1q gain 3.3 1.261 9.2 0.0102 0.082 

8q gain 3.3 1.05 11.3 0.0337 0.18 

11q loss 4.3 1.549 12.5 0.0024 0.039 

ER Inf 0.656   Inf 0.0753 0.25 

PR 1.7 0.61 5 0.3498 0.622 

HER2 1.5 0.102 21.1 1 1 

TABLE S6. ADJUSTED HAZARD RATIOS FOR KNOWN PROGNOSTIC 

FACTORS 
We report here the adjusted hazard ratios (HR) for the commonly used clinical variables, with 95% 
confidence intervals (CI). 

Coefficient HR CI low CI high 

tumour_size_in_cm 1.004 0.8428 1.196 

histological_grade 0.5671 0.06455 4.983 

number_of_positive_lymph_nodes 1.31 1.143 1.501 

treatment_hormonalTRUE 0.1266 0.02253 0.7119 

treatment_radiotherapyTRUE 0.2665 0.05138 1.382 

treatment_adjuvant_chemotherapyTRUE 0.6387 0.09494 4.297 

age_at_diagnosis 1.097 1.037 1.161 

TABLE S7. HIGH CELLULARITY CLUSTERING 
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We have performed a separate clustering for samples with at least 50% tumor cellularity and report 
here the assignment of these samples (IR-50, HR50) with respect to the previously defined IR and HR 
subtypes. Only 3 samples are misclassified. 

 IR HR 

IR-50 13 0 

HR-50 3 26 
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