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Text S1. Search algorithm 

The chain search algorithm was implemented to find every non-cyclical path in a network that 

connects a start and an end set of elements until an added maximal depth. The basic problem is 

defined by the National Institute of Standards and Technology (NIST) as the “all simple paths” 

problem which is an NP hard problem because of the exponential number of simple paths. This 

means that even in a smaller network with few hundreds of nodes the results can exceed 

millions of paths. We implemented a recursive depth first search (DFS) algorithm that searches 

all the paths from a start set of nodes until it finds all the paths to an end set of nodes. 

Furthermore the paths going through start and end vertices are excluded. The output of the 

algorithm is a list of chains. 

Input:  

N: Network;  

S: Start nodes;  

E: End nodes;  

MD: Maximal depth,  

Output: ChainList = [] 

1. procedure main(N, S, E,MD): 

2.  ChainList = [] 

3. depth = 0 

4. for all vertex s in S  

5.   ChainList.append(DFS(N, s, E,MD,depth))  

6. end procedure 

7. 

8. procedure DFS(N, s, E,MD,depth): 

9.  Chains = [] 

10. depth = depth + 1 

11. V = N.adjacentNodes(s) 

12. V = nonVisited(V) 

13. for all vertex v in V do 

14.  ChainTail = [] 

15.  if v in E 

16.   ChainTail.append(v) 

17.  else if depth > MD  then 

18.   backtrack 

19.  else 

20.   ChainTail.append(DFS(N,w,E,MD,depth)) 

21.  Chains.append(ChainTail) 

22. return Chains 

23. end procedure. 



Text S2. Localitsation score 

Microarray Expression data: 

During January 2013 all available samples of the following platforms were identified from Gene 

Expression Omnibus (1): 

      

a.     GPL96: Affymetrix Human Genome U133A Array 

b.     GPL570: Affymetrix Human Genome U133 Plus 2.0 Array    

c.     GPL6480: Agilent-014850 Whole Human Genome Microarray 

 

Those platforms were selected because at that time they provided the largest number of human 

mRNA profiles. The normalised profiles of all samples were downloaded using GEOquery (2). 

Then the samples were processed in four steps: 

a) Each sample was annotated by mapping the meta-data associated to each sample to a 

controlled vocabulary of muscle and cancer. 

b) For each sample the number of missing values were computed and if the number of 

missing values were larger than 5% the sample was excluded. 

c) For each gene (using entrezgene reference) a value was computed as the average of all 

probes associated to the gene. In each platform the number of genes (ngenes) profiled 

was constant. 

d) For a given platform, each sample was normalised by ranking: the gene with a 

maximum value was given a value of ngenes and the one with minimum value was set 

to 1. 

e) At the end of the processing and to ensure robustness of the statistics to be computed 

only those experiments (GSE codes) that contained more than 9 non-filtered samples 

were included. 

 

Calculation of score 

To calculate the score we estimated the mean variability of a gene in muscle and the rest of the 

body for the different platforms. To this end we considered those samples associated to muscle, 

not associated to muscle and in all cases we excluded those associated to cancer. Then we 

estimated for those experiments (GSE codes) with at least 10 samples the ratio of "variability in 

muscle"/ "variability in non-muscle". Top rank-based genes are expected to be those gene 

highly varying in the muscle but not in other tissues, therefore we consider those as candidates 

to be associated to muscle regulation and/or muscle function. 



Text S3. Relevance score 

To elucidate the transcriptional changes between skeletal muscle of young and elderly 

populations with a high degree of confidence we performed a meta-analysis of existing 

microarray data. Datasets representing baseline transcription were downloaded from the Gene 

Expression Omnibus (Edgar, 2002). Inclusion criteria were: vastus lateralis muscle, pre-

intervention, disease-free subjects aged 18-30 or >60 years, and Affymetrix microarray 

technology. In total 133 high-quality arrays were included (55 young and 78 elderly adults) 

from 8 different datasets (accession numbers: GSE1428, GSE14901, GSE1786, GSE19420, 

GSE21496, GSE9419, GSE9676, GSE27536). Data were normalized to eliminate systematic 

biases introduced by combining expression data from different independent laboratories using 

ComBat (Johnson, Li, & Rabinovic, 2007). Genes differentially expressed in elderly muscle 

versus young muscle were identified using Significance Analysis of Microarrays (Tusher, 

Tibshirani & Chu, 2001, PNAS) with a 1% FDR threshold. To identify important interactions 

between components of the ageing signature we inferred global gene co-expression networks 

representing young and elderly muscle using the ARACNE software (Basso et al., 2005). 

Statistical significant interactions have been selected using a threshold of p<10-9. The two age-

specific networks were merged and visualised using the software application Cytoscape 

(Shannon et al., 2003) . Modules of highly connected genes were identified using the network 

community detection algorithm Glay (Su, Kuchinsky, Morris, States, & Meng, 2010). Number 

of genes obtained from young network: 2381. Number of genes obtained from elderly network: 

1310. 

To obtain the COPD training effect gene list we retrieved the genes included in the correlation 

network computed in (Turan et. al., 2011). Genes differentially expressed between sedentary 

and trained subjects in the populations (healthy, COPD) were identified by t-test followed by 

Benjamimi-Hochberg multiple correction [20] using a false discovery rate (FDR) threshold of 

q<10%. Using the ARACNE software (Basso et al., 2005) global gene co-expression network 

was computed and statistical significant interactions have been selected using a threshold of 

p<10-9. Number of genes obtained: 4918. 

To obtain the mouse inactivity muscle wasting gene list significant genes were retrieved from 

the study Bialek et al., 2011. In the study transcripts were considered to be regulated if the P 

value based on two-way ANOVA analyses using time and treatment parameters and evaluating 

treatment was <0.01 and the fold change between any two groups (control, inactive mouse) was 

>1.5. Using the ARACNE software (Basso et al., 2005) global gene co-expression network was 

computed and statistical significant interactions have been selected using a threshold of p<10-7. 

Number of genes obtained: 10557. 

 



Text S4. Tissue Specific score 

This score was motivated by the Tissue Specific score (TS score) described on the Human 

Protein Atlas website. TS score “corresponds to the score calculated as the fold change to the 

second highest tissue”. The score is calculated using the FPKM values (number of Fragments 

Per Kilobase gene model and Million reads) 

(http://www.proteinatlas.org/about/assays+annotation#rna), computed from RNA-seq data 

gained from 32 tissues (available at http://www.proteinatlas.org/about/download). The threshold 

level to detect presence of a transcript for a particular gene is defined as > 1 FPKM on the 

Protein Atlas website, and thus we set the minimal score to 1 to avoid infinite scores (i.e. 

protein is not detected in other tissues). We handled missing values by substituting them by the 

mean of the score in the network. 



Table S1. Elements of the EGF-PI3K and ROS-TGFa-EGFR COPD specific MAPK 

pathways used for the evaluation. Genes with red font color are not part of the canonical 

MAPK pathway, 

Protein name Related 
Gene  

ADAM metallopeptidase domain 17 preproprotein ADAM17 

v-akt murine thymoma viral oncogene homolog 1 AKT1 

epidermal growth factor (beta-urogastrone) EGF 

epidermal growth factor receptor isoform a EGFR 

erbB-2 isoform b ERBB2 

coagulation factor II precursor F2 

FK506 binding protein 12-rapamycin associated protein 1 FRAP1 

v-Ha-ras Harvey rat sarcoma viral oncogene homolog isofrom 1 HRAS 

mitogen-activated protein kinase kinase 1 MAP2K1 

mitogen-activated protein kinase kinase 2 MAP2K2 

mitogen-activated protein kinase 1 MAPK1 

mucin 2 MUC2 

mucin 5AC MUC5AC 

phosphoinositide-3-kinase, catalytic, gamma polypeptide PIK3CG 

v-raf-1 murine leukemia viral oncogene homolog 1 RAF1 

Ras homolog enriched in brain RHEB 

ribosomal protein S6 kinase, 70kDa, polypeptide 1 RPS6KB1 

Sp1 transcription factor SP1 

transforming growth factor, alpha TGFA 

tuberous sclerosis 1 protein isoform 2 TSC1 

tuberous sclerosis 2 isoform 4. TSC2 

 

 

 



 

Table S2. Detailed overview of the analysed networks and gold standards. The two 

application cases are detailed in the table. Different network selection strategies were tried out 

(Section 3.2). Less connected proteins were preferred in the hub reducing case and more 

connected proteins were preferred in the hub enriching case. The gold standards are also shown 

in the table. The last column compares the representation of the GS nodes and edges in the 

Human PPI network and in the reduced networks. The table shows that there is a noticeable 

difference in the size of the selected networks, when using hub enriching and hub reducing 

strategies. This noticeable difference is due to the fact that the hub enriched networks showed 

higher complexity during the chain search, i.e. we found much more chains in the similar sized 

hub enriching networks than the hub reducing ones. 

Application 

case  

Type of network 

reduction 

Network 

properties 

Gold standard 

(GS) 

Start 

protein 
End protein 

GS representation 

(after/before 

network selection) 

Number 

of edges 

Number 

of nodes 
   Nodes Edges 

IGF-Akt 
proximity 
subnetworks 

Hub enriching 865 314 IGF-Akt 

pathway 
IGF1 RPS6KB1 

9/13 10/20 

Hub reducing 2874 1215 11/13 11/20 

MAPK 
proximity 
subnetworks 

Hub enriching 583 156 CODP specific 

MAPK 
EGFR 

SRF, 

CREBBP, 

ELK1, 

MYC 

7/21 4/34 

Hub reducing 1806 1076 12/21 0/34 

 



Table S3. Performance of ChainRank. We assessed the performance of our algorithm by 

running it with different maximal length parametrization and with different network selection 

strategies (Section 3.2). Less connected proteins were preferred in the hub reducing case and 

more connected proteins were preferred in the hub enriching case.  The table shows the number 

of chains found and the time needed for the search for the different networks, and different 

maximal lengths. The time shown in the table only includes the time consumption of the search 

in the indicated networks. It does not include the search in the random networks for the p-value 

calculation. For the test a computer with 2.4GHz processor was used. In the COPD related case 

the search from the start node to separate end nodes was run parallelly. 

Application 

case 

Type of network 

reduction 

Network properties 

Max length Chains Time 

Number 

of edges 

Number 

of nodes 

IGF-Akt 
proximity 

subnetworks 

Hub enriching 865 314 

6 146 15s 

7 823 1min 15s 

8 9351 15min 

9 70703 1.5h 

Hub reducing 2874 1215 

6 162 16s 

7 1146 5min 

8 9078 16min 

MAPK 
proximity 

subnetworks 

Hub enriching 544 152 

6 11967 2min 

7 71838 47min 

Hub reducing 1806 1076 

6 289 4s 

7 765 10s 



 

 Table S4. Comparison of improvement in different networks.  

Application 
case 

Network 
reduction 

type 

Threshold 
(p-value or 

n) 

Connectivity Relevance Locality Intersection Filtering 

IGF-Akt 

proximity 

subnetworks 

hub 

enriching 
0.015 1.83 1.35 1.54 2.83 2.47 

hub 

reducing 
0.015 0.45  1.06 1.43 1.67 1.67 

MAPK 

proximity 

subnetworks 

hub 

enriching 
50 1.07 2.11 1.50 2.38 2.66 

 



Figure S1. Distribution of scores in the input subnetwork. Score distributions were plotted in the whole PPI network, 

the pathway specific networks and the recreated pathways. The Connectivity score distributions shows the effect of 

the subnetwork selection step, enriching highly connected proteins. The other two scores’ distribution remained 

intact from the subnetwork selection step.  

 



Figure S2. IGF-Akt, muscle specific case, maximal length 8, detailed (A) Precision and (B) true positive rate. Dashed 

line shows the random score. On figure (A) number of chains indicated at p= 0.015 and p= 0.05. 
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Figure S3. MAPK, disease specific case, maximal length 7, detailed (A) precision and (B) true positive rate (C) ROC 

curve and AUC. Dashed line shows the random score. 
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Figure S4. Evaluation of the effect of maximal length on improvement. (A) shows the muscle specific case (IGF-Akt 

gold standard) with the comparison of two networks computed with ChainRank using the parameter of maximal 

length 7, 8 and 9. (B) similarly, it shows for MAPK application case, with maximal length 6 and 7. 
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Figure S5. Distribution of scores in the recreated pathways. Score distributions were plotted in the whole PPI 

network (Interactome), the gold standard pathways and the recreated pathways with the case specific score and 

the Intersection score specified as Fig. 4 in the main text.  



Figure S6. Evaluation of the improvement of the additional scores in the muscle (A) and  disease specific (B) cases 

showing the robustness of the method to different scores. We note that results might be slightly different from Fig. 

4 in the main text due to random processes used in the validation. 
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Figure S7.  The EGF-PI3K and ROS-TGFa-EGFR COPD specific MAPK pathways used for the evaluation 



Figure S8. Network of top chains for the IGF-Akt scenario.  Chains having a Localisation p-value lower than 0.015 

assembled to a network. The networks were created using the network output file of ChainRank by visualizing it in 

Cytoscape and ordering it by hierarchical layout. 

 

 


